Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
A, TA CÓ: AH vuông góc với CB, tam giác ABC cân tại A=>AH là đường trung tuyến của ABC=>CH=CB
Xét tam giác CDB có MH // DB, CH=CB =>M trung điểm của CD (T/C đường tb của tam giác)
b, xét tam giác CDB có CM=MD, DN=NB=>MN là đường tb của tam giác CDB => MN // CB
MÀ AH vuông góc với CB,=>MN vuông góc với AH mà E thuộc MN=>ME vuông góc với AH
CÒN PHẦN C THÌ MK KO BIẾT. SORRY NHA
*Bạn tự vẽ kình nha
a) Xét \(\Delta\) IHC có J, M là trung điểm của IH,IC
=> JM là đường trung bình
=> +) JM = 1/2 HC
+) JM // HC
Có AK // BC mà H thuộc BC => AK // HC
mà JM // HC (cmt)
=>AK // JM
Lại có N là trung điểm của AK => +) N\(\in\)AK
mà AK // JM (cmt) => AN // JM (1)
+) AN = 1/2 AK
Xét tứ giác AKNH có AK // Hc , AH // KC
=> AKNH là hình bình hành => AK = HC
Có : AN = 1/2 AK
JM = 1/2 HC
=> AN = JM (2)
Từ (1) và (2) => tứ giác ANMJ là hình bình hành
Xem lại đề nhà bạn, BI vuông góc với MN thì hơi vô lí, BI vuông góc với AN thôi
1) Ta có:
\(\hept{\begin{cases}IM=\frac{1}{2}HC\\AN=\frac{1}{2}AK\\HC=AK\end{cases}}\)\(\Rightarrow IM=AN\)
mà IM // AN
\(\Rightarrow\)AJMN là hình bình hành.