Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có AD là phân giác
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{4+6}=\dfrac{5}{10}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{1}{2}.AB=\dfrac{1}{2}.4=2\left(cm\right)\\DC=\dfrac{1}{2}.AC=\dfrac{1}{2}.6=3\left(cm\right)\end{matrix}\right.\)
b) Ta có: DE//AC \(\Rightarrow\widehat{ADE}=\widehat{DAC}\)(so le trong)
Mà \(\widehat{DAC}=\widehat{BAD}\)(AD là phân giác)
\(\Rightarrow\widehat{ADE}=\widehat{BAD}\) => Tam giác ADE cân tại E => AE=DE
c) Xét tam giác ABC có:
DE//AC \(\Rightarrow\dfrac{DE}{AC}=\dfrac{BD}{BC}\Rightarrow DE=\dfrac{BD.AC}{BC}=\dfrac{2.6}{5}=2,4\left(cm\right)\)
Mà AE=DE \(\Rightarrow AE=DE=2,4cm\)
cosB = (AB^2 +BC^2-AC^2)/(2.AB.BC) = (4^2 +5^2 -6^2)/(2.4.5) = 1/8
=> ^B = 92°
cosC = (CA^2 +CB^2 - AB^2)/(2.CA.CB) = (6^2+5^2-4^2)/(2.6.5)=3/4
=> ^C = 46°
Vậy ^B = 2^C (ĐPCM)
a, \(\Delta ABC\sim\Delta CBD\)
\(\dfrac{AB}{CB}=\dfrac{BC}{BD}=\dfrac{4}{6}=\dfrac{6}{4+5}=\dfrac{2}{3}\)
b, \(\dfrac{AC}{CD}=\dfrac{AB}{CB}=\dfrac{2}{3}\)
\(\Rightarrow CD=\dfrac{3AC}{2}=\dfrac{15}{2}\)
-Chúc bạn học tốt-
Xét tam giác ABC có AD là tia phân giác của góc A
theo t/c đường phân giác trong tam giác, ta có:
AB/BD=AC/DC.Áp dụng dãy tỉ số bằng nhau ta có:
AB/BD=AC/DChay4/BD=6/DC=4+6/BD+DC=4+6/BC=10/5.
Từ 4/BD=10/5 => BD=4*5/10=2(cm)
6/DC=10/5 => DC=6*5/10=3(cm)