K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

\(\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-5+7}{\sqrt{x}-5}=1+\frac{7}{\sqrt{x}-5}\)

13 tháng 4 2019

\(=\frac{\left(\sqrt{x}-5\right)+7}{\sqrt{x}-5}=1+\frac{7}{\sqrt{x}-5}\)

Em nghĩ thế thôi chứ sai đúng em ko biết đâu nha 

26 tháng 7 2017

đkxđ là \(x\ne1;x>0\)

\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

gtnn 3/4

ý c bạn tự làm nha mk chịu

27 tháng 7 2017

mình cảm ơn bạn nha 

\(x=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5-1}\right)^2}}{\sqrt{20}}=\frac{2\sqrt{5}}{\sqrt{20}}=1\)

=>P=(1+1-1)2016=1

18 tháng 8 2015

C=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}\right).\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{\left(\sqrt{x}+2\right).\left(x-1\right)-\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{x\sqrt{x}-\sqrt{x}+2x-2-\left(x-1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{x-1+x\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{\left(x-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

C=\(\frac{1}{\sqrt{x}}=\frac{\sqrt{x}}{x}\)

21 tháng 7 2017

a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne-1\\x\ne1\end{cases}}\)

Ta có \(P=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)\(=\frac{x+\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}-1\)

\(=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}-1=\frac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2}{\sqrt{x}-1}\)

b. Ta có \(P-\sqrt{x}=\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{x+2-x+\sqrt{x}}{\sqrt{x}-1}=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

\(=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)

Để \(P-\sqrt{x}\in Z\Rightarrow\sqrt{x}-1\inƯ\left(3\right)\Rightarrow\sqrt{x}-1\in\left\{-3;-1;1;3\right\}\)

\(\sqrt{x}-1\)\(-3\)\(-1\)\(1\)\(3\)
\(\sqrt{x}\)-2024
x 0416
 (l)(n)(n)(n)

Vậy \(x\in\left\{0;4;16\right\}\)thì \(P-\sqrt{x}\in Z\)

13 tháng 9 2015

a> \(x\ge1và1\ge x,x\ne1\)

ko có x thỏa mãn

ĐK x >0

\(PT\Leftrightarrow2x+2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}.\)

\(\Leftrightarrow2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}-2x\)

\(\Leftrightarrow x^2-\frac{1}{x^4}=\frac{4}{x^4}-\frac{4}{x}+x^2\)(chia cả 2 vế cho 2)

\(\Leftrightarrow\frac{5}{x^4}-\frac{4}{x}=0\Leftrightarrow5-4x^3=0\Leftrightarrow4x^3=5\)

\(\Leftrightarrow x^3=\frac{5}{4}\Leftrightarrow x=\sqrt[3]{\frac{5}{4}}\)

Vậy................................