K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

14 tháng 7 2018

1) Gọi hai số đó là a và b

Ta có:   a+b=3(a-b) 

        => a+b = 3a -3b 

=> a+b +3b = 3a

=> a+ 4b = 3a => 4b = 2a  => 2b = a => a : b = 2

ĐS : 2

2) Gọi thương của phép chia A chia cho 54 là b

Ta có : a : 54 = b ( dư 38 ) => a = 54b + 38 

=> a = 18.3b + 18.2 + 2 = 18.( 3b + 2 ) + 2

=> a chia cho 18 được thương là 3b + 2 ; dư 2

Theo đề bài 3b + 2 = 14 => 3b = 12 => b = 4

Vậy a = 54.4 + 38 = 254 

3)a) Tích của 3 số tận cùng là 1 => tích lẻ => cả 3 số trong đó đều là số lẻ

Mà Tổng của 3 số lẻ là 1 số lẻ nên không thể tận cùng là 4 

=> Không tồn tại 3 số như vậy

b) Tích 4 số là số lẻ => cả 4 số đó đều là số lẻ  

Vì tổng của 2 số lẻ là số chẵn nên tổng của 4 số  lẻ là số chẵn  => Không tồn tại  4 số thỏa  mãn tổng là số lẻ 

~ Học tốt ~

29 tháng 5 2017

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(a-b\right)}{ab\left(a-b\right)}=\frac{ab}{\left(a-b\right)ab}\)

\(\Leftrightarrow-\left(b-a\right)^2=ab\)

\(\Leftrightarrow-b^2+2ab-a^2=ab\)

\(\Leftrightarrow\)\(ab=a^2+b^2\)

Từ đây dùng cô-si : \(a^2+b^2\ge4ab\)

Vậy không có số dương a,b thỏa mãn

29 tháng 5 2017

ukm,bằng?

Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôncó 2 số chia hết cho nhau.Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bấtkì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48...
Đọc tiếp


Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôn
có 2 số chia hết cho nhau.
Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bất
kì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?
Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48 số 0 theo thứ tự 1; 0; 1; 0; 0; · · · ; 0. Mỗi phép biến đổi, ta
thay một 2 cặp 2 số liền nhau bất kì (x; y) bởi (x + 1; y + 1). Hỏi nếu ta lặp lại thao tác trên thì có thể đến 1
lúc nào đó thu được 50 số giống nhau hay không?
Bài 5. Trên đường tròn lấy theo thứ tự 12 điểm A1; A2; A3; · · · ; A12. Tại điểm A1 ta viết số -1, tại các đỉnh
còn lại ta viết số 1. Ở mỗi bước, chọn 6 điểm kề nhau bất kì và đổi dấu tất cả các số tại các điểm đó. Hỏi nếu
ta lặp lại thao tác trên thì có thể đến 1 lúc nào đó thu được trạng thái: điểm A2 viết số -1, các đỉnh còn lại
viết số 1, hay không?
Bài 6. Kí hiệu S(n) là tổng các chữ số của n. Tìm n, biết:
a) n + S(n) + S(S(n)) = 2019.
b) n + S(n) + S(S(n)) = 2020.
Bài 7. Giả sử (a1; a2; a3; · · · ; an) là 1 hoán vị của (1; 2; 3; · · · ; n) (là các số 1; 2; 3; · · · ; n nhưng viết theo
thứ tự tùy ý). Chứng minh rằng nếu n lẻ thì số P = (a1 - 1)(a2 - 2)(a3 - 3) · · · (an - n) là số chẵn.
Bài 8. Trên bàn có 6 viên sỏi, được chia thành vài đống nhỏ. Mỗi phép biến đổi được thực hiện như sau: ta
lấy ở mỗi đống 1 viên và lập thành đống mới. Hỏi sau 69 bước biến đổi như trên, các viên sỏi trên bàn được
chia thành mấy đống?
Bài 9. Xung quanh công viên người ta trồng n cây, giả sử trên mỗi cây có 1 con chim. Ở mỗi lượt, có 2 con
chim đồng thời bay sang cây bên cạnh theo hướng ngược nhau.
a) Với n lẻ, chứng tỏ rằng có thể có cách để tất cả các con chim cùng đậu trên một cây.
b) Chứng minh điều ngược lại với n chẵn.
 

0
22 tháng 6 2017

Giả sử a > b > 0 \(=>\frac{1}{a}< \frac{1}{b}=>\frac{1}{a}-\frac{1}{b}< 0;\frac{1}{a-b}>0\)

\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

 Trường hợp 2

Giả sử a < b \(=>\frac{1}{a}>\frac{1}{b}=>\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}< 0\) 

\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

Vậy không tồn tại hay không có hai số nguyên dương a , b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

22 tháng 6 2017

\(a-b=2\left(a+b\right)=\frac{a}{b}\)

\(\hept{\begin{cases}a-b=2\left(a+b\right)\\2\left(a+b\right)=\frac{a}{b}\end{cases}}\)

a-b=2(a+b)

a-b=2a+2b

3b=a

Another way :

a-b=2(a+b)

=> -2b - b -2a + a =0

-(3b+a)=0

3b+a=0

Do đó :3b-b= 3b/b = 3 nên b = 3/4

b = 3/4 nên a = - 9/4

\(\Leftrightarrow\hept{\begin{cases}b=\frac{3}{4}\\a=-\frac{9}{4}\end{cases}}\)