Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
1) Gọi hai số đó là a và b
Ta có: a+b=3(a-b)
=> a+b = 3a -3b
=> a+b +3b = 3a
=> a+ 4b = 3a => 4b = 2a => 2b = a => a : b = 2
ĐS : 2
2) Gọi thương của phép chia A chia cho 54 là b
Ta có : a : 54 = b ( dư 38 ) => a = 54b + 38
=> a = 18.3b + 18.2 + 2 = 18.( 3b + 2 ) + 2
=> a chia cho 18 được thương là 3b + 2 ; dư 2
Theo đề bài 3b + 2 = 14 => 3b = 12 => b = 4
Vậy a = 54.4 + 38 = 254
3)a) Tích của 3 số tận cùng là 1 => tích lẻ => cả 3 số trong đó đều là số lẻ
Mà Tổng của 3 số lẻ là 1 số lẻ nên không thể tận cùng là 4
=> Không tồn tại 3 số như vậy
b) Tích 4 số là số lẻ => cả 4 số đó đều là số lẻ
Vì tổng của 2 số lẻ là số chẵn nên tổng của 4 số lẻ là số chẵn => Không tồn tại 4 số thỏa mãn tổng là số lẻ
~ Học tốt ~
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(a-b\right)}{ab\left(a-b\right)}=\frac{ab}{\left(a-b\right)ab}\)
\(\Leftrightarrow-\left(b-a\right)^2=ab\)
\(\Leftrightarrow-b^2+2ab-a^2=ab\)
\(\Leftrightarrow\)\(ab=a^2+b^2\)
Từ đây dùng cô-si : \(a^2+b^2\ge4ab\)
Vậy không có số dương a,b thỏa mãn
Giả sử a > b > 0 \(=>\frac{1}{a}< \frac{1}{b}=>\frac{1}{a}-\frac{1}{b}< 0;\frac{1}{a-b}>0\)
\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Trường hợp 2
Giả sử a < b \(=>\frac{1}{a}>\frac{1}{b}=>\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}< 0\)
\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Vậy không tồn tại hay không có hai số nguyên dương a , b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(a-b=2\left(a+b\right)=\frac{a}{b}\)
\(\hept{\begin{cases}a-b=2\left(a+b\right)\\2\left(a+b\right)=\frac{a}{b}\end{cases}}\)
a-b=2(a+b)
a-b=2a+2b
3b=a
Another way :
a-b=2(a+b)
=> -2b - b -2a + a =0
-(3b+a)=0
3b+a=0
Do đó :3b-b= 3b/b = 3 nên b = 3/4
b = 3/4 nên a = - 9/4
\(\Leftrightarrow\hept{\begin{cases}b=\frac{3}{4}\\a=-\frac{9}{4}\end{cases}}\)