\(\sqrt{2}x+15\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

Gọi hàm số cần tìm có dạng y= ax+b

Xét phương trình hoành độ giao điểm của đồ thị 2 hàm số: y= 2x+1 và y= 3x-4

\(2x+1=3x-4\)

\(\Leftrightarrow x=5\Rightarrow y=2.5+1=11\)

\(\Rightarrow\left(5;11\right)\)

Vì đồ thị hàm số y= ax+b // với đường thẳng: \(y=\sqrt{2}x+15\Rightarrow a=\sqrt{2}\)

Thay vào hàm số:

\(\sqrt{2}.5+b=11\Rightarrow b=11-5\sqrt{2}\)

\(\Rightarrow y=\sqrt{2}x+11-5\sqrt{2}\)

NV
10 tháng 5 2020

Đường tròn (C1) có tâm I(1;-2) bán kính \(R=\sqrt{5}\)

Đường tròn (C2) có tâm \(J\left(-1;-3\right)\) bán kính \(R=3\)

Áp dụng Pitago: \(d\left(J;d\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=\sqrt{5}\)

\(\Rightarrow d\left(I;d\right)=d\left(J;d\right)\Rightarrow d//IJ\) (dễ dàng loại trường hợp d đi qua trung điểm của IJ, vì trung điểm của IJ nằm trong (C1))

\(\overrightarrow{JI}=\left(2;1\right)\Rightarrow\) d nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình d có dạng: \(x-2y+c=0\)

\(d\left(I;d\right)=\sqrt{5}\Rightarrow\frac{\left|1.1-\left(-2\right).2+c\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\)

\(\Rightarrow\left|c+5\right|=5\Rightarrow\left[{}\begin{matrix}c=0\\c=-10\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-2y=0\\x-2y-10=0\end{matrix}\right.\)

NV
29 tháng 1 2021

a.

\(\overrightarrow{EF}=\left(1;-1\right)\Rightarrow d_4\) nhận (1;-1) là 1 vtpt

Phương trình \(d_4\) :

\(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)

b.

\(\Delta\) nhận \(\left(2;-1\right)\) là 1 vtcp nên \(d_5\) nhận \(\left(2;-1\right)\) là 1 vtpt

Pt \(d_5\) : \(2\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-7=0\)

c.

\(\Delta\) nhận \(\left(-1;-3\right)\) là 1 vtcp nên \(d_6\) nhận \(\left(3;-1\right)\) là 1 vtpt

Phương trình \(d_6\) :

\(3\left(x-4\right)-1\left(y-6\right)=0\Leftrightarrow3x-y-6=0\)

NV
5 tháng 5 2020

Đường tròn tâm \(O\left(0;0\right)\) bán kính \(R=2\)

a/ Tiếp tuyến d' song song d nên có dạng: \(3x-y+c=0\) \(\left(c\ne17\right)\)

Do d' là tiếp tuyến

\(\Leftrightarrow d\left(O;d'\right)=R\)

\(\Leftrightarrow\frac{\left|3.0-1.0+c\right|}{\sqrt{3^2+\left(-1\right)^2}}=2\Leftrightarrow\left|c\right|=2\sqrt{10}\Rightarrow c=\pm2\sqrt{10}\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)

b/ d' vuông góc d nên pt có dạng \(2x-y+c=0\)

\(d\left(O;d'\right)=R\Leftrightarrow\frac{\left|2.0-1.0+c\right|}{\sqrt{2^2+1^2}}=2\Rightarrow\left|c\right|=2\sqrt{5}\Rightarrow c=\pm2\sqrt{5}\)

Có 2 tiếp tuyến t/m: \(\left[{}\begin{matrix}2x-y+2\sqrt{5}=0\\2x-y-2\sqrt{5}=0\end{matrix}\right.\)

c/ Tiếp tuyến d' qua M nên pt có dạng:

\(a\left(x-2\right)+b\left(y+2\right)=0\Leftrightarrow ax+by-2a+2b=0\)

\(d\left(O;d'\right)=R\Leftrightarrow\frac{\left|0.a+0.b-2a+2b\right|}{\sqrt{a^2+b^2}}=2\)

\(\Leftrightarrow\left|a-b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow a^2-2ab+b^2=a^2+b^2\)

\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\)

NV
5 tháng 5 2020

Chắc bạn viết sai đề, chưa bao giờ thấy đường tròn nào có pt bậc 4 như vậy cả

Pt đường tròn có dạng kiểu như \(x^2+y^2=4\)

Còn pt \(x^4+y^4=4\) nó có đồ thị như vầy:

Hỏi đáp Toán

Nhìn có "tròn" chút nào đâu? :D

NV
4 tháng 6 2020

Đường tròn tâm \(I\left(1;-3\right)\) bán kính \(R=5\)

Do tiếp tuyến d vuông góc với d1 nên phương trình d có dạng:

\(4x+3y+c=0\)

d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|4.1-3.3+c\right|}{\sqrt{4^2+3^2}}=5\Leftrightarrow\left|c-5\right|=25\)

\(\Rightarrow\left[{}\begin{matrix}c=30\\c=-20\end{matrix}\right.\) có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}4x+3y+30=0\\4x+3y-20=0\end{matrix}\right.\)

a: Gọi pt đường thẳng cần tìm có dạng là (d): x-2y-b=0

Thay x=-1 và y=2 vào (d), ta được:

-1-4-b=0

=>b=-5

NV
18 tháng 3 2021

1. Gọi \(M\left(x;y\right)\) là điểm bất kì nằm trên phân giác 

\(\Rightarrow d\left(M;d_1\right)=d\left(M;d_2\right)\Leftrightarrow\dfrac{\left|3x-4y-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|12x+5y-12\right|}{\sqrt{12^2+5^2}}\)

\(\Leftrightarrow\left|39x-52y-39\right|=\left|60x+25y-60\right|\)

\(\Rightarrow\left[{}\begin{matrix}60x+25y-60=39x-52y-39\\60x+25y-60=-39x+52y+39\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+11y-3=0\\11x-3y-11=0\end{matrix}\right.\)

Xét \(3x+11y-3=0\) có vtpt \(\left(3;11\right)\)

Ta có: \(cos^{-1}\dfrac{\left|3.3-11.4\right|}{\sqrt{3^2+\left(-4\right)^2}.\sqrt{3^2+11^2}}=52^0>45^0\) (ktm)

\(\Rightarrow11x-3y-11=0\) là pt đường phân giác góc nhọn tạo bởi d1 và d2

NV
18 tháng 3 2021

2.

Phương trình d1: \(\sqrt{2}x-\sqrt{2}y+2m=0\)

Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính \(R=1\)

Đường thẳng d1 tiếp xúc với (C) khi và chỉ khi:

\(d\left(O;d_1\right)=R\)

\(\Leftrightarrow\dfrac{\left|2m\right|}{\sqrt{2+2}}=1\Leftrightarrow\left|2m\right|=2\)

\(\Rightarrow m=\pm1\)

2 tháng 7 2020

\(A\left(a;a+1\right);B\left(b;1-2b\right)\\ \Rightarrow\left\{{}\begin{matrix}2x_P=a+b=4\\2y_P=a+1+1-2b=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{8}{3}\\b=\frac{4}{3}\end{matrix}\right.\\ \Rightarrow A\left(\frac{8}{3};\frac{11}{3}\right);B\left(\frac{4}{3};-\frac{5}{3}\right)\\ \Rightarrow\overrightarrow{AB}\left(-\frac{4}{3};-\frac{16}{3}\right)\Rightarrow\overrightarrow{n}_{AB}\left(4;-1\right)\Rightarrow pt\text{ }AB:4x-y-7=0\)

NV
4 tháng 6 2020

Phương trình d: \(\left(x+1\right)m-\left(2x+y-3\right)=0\)

\(\Rightarrow\) d luôn đi qua điểm cố định A có tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+1=0\\2x+y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)

Gọi H là hình chiếu của N lên d, theo định lý đường xiên - đường vuông góc ta luôn có \(NH\le AN\Rightarrow NH_{max}=AN\) khi H trùng N hay d vuông góc AN

\(\overrightarrow{AN}=\left(2;-2\right)=2\left(1;-1\right)\)

Đường thẳng d có 1 vtpt là \(\left(m-2;-1\right)\Rightarrow\) có 1 vtcp là \(\left(1;m-2\right)\)

\(AN\perp d\Leftrightarrow1.1-1\left(m-2\right)=0\Rightarrow m=3\)