Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x(x^2+x+1)=4y(y+1)$
$\Leftrightarrow x(x^2+x+1)+1=4y(y+1)+1$
$\Leftrightarrow (x^2+1)(x+1)=(2y+1)^2$
Vì $(x^2+1)-(x+1)=x^2-x=x(x-1)\vdots 2$ nên $x^2+1, x+1$ cùng tính chẵn lẻ. Mà tích của chúng là $(2y+1)^2$ lẻ nên $x^2+1, x+1$ cùng lẻ.
Gọi $d=ƯCLN(x^2+1, x+1)$
$\Rightarrow x^2+1\vdots d; x+1\vdots d$
$\Rightarrow x(x+1)-(x^2+1)\vdots d$
$\Rightarrow x-1\vdots d$
$\Rightarrow (x+1)-(x-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $x^2+1\vdots 2$ (loại do $x^2+1$ lẻ)
$\Rightarrow d=1$
Vậy $(x^2+1, x+1)=1$. Mà tích của chúng là scp nên bản thân mỗi số $x^2+1, x+1$ là scp.
Đặt $x^2+1=a^2, x+1=b^2$ với $a,b\in\mathbb{N}$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Rightarrow 1=(a^2-b^2+1)(a^2+b^2-1)$
$\Rightarrow a^2-b^2+1=1=a^2+b^2-1=1$
$\Rightarrow a=b=1$
$\Rightarrow x=0\Rightarrow y=0$ hoặc $y=-1$
pt <=> 30x2-3x2y2-y2=-517<=>3x2(10-y2)-y2+10=-517+10=-507
<=>3x2(10-y2)+(10-y2)=-507<=>(3x2+1)(10-y2)=-507
đến đây giải pt ước số , chú ý 3x2+1>0
\(9x^2+4y^2+26+4y=30x\)
\(\Leftrightarrow9x^2-30x+4y^2+4y+26=0\)
\(\Leftrightarrow\left(9x^2-30x+25\right)+\left(4y^2+4y+1\right)=0\)
\(\Leftrightarrow\left(3x-5\right)^2+\left(2y+1\right)^2=0\)
Mà: \(\left\{{}\begin{matrix}\left(3x-5\right)^2\ge0\forall x\\\left(2y+1\right)^2\ge0\forall x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=5\\2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Tớ biết cách làm nhưng mà hơi dài dài được không Hoàng Bảo Ngọc