\(-9\cdot4^{\frac{1}{x}}-5\cdot6^{\frac{1}{x}}+4\cdot9^{\frac{1}{x}}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

Đk: x khác 0;

pt \(\Leftrightarrow-9\cdot2^{\frac{1}{x}}-5\cdot2^{\frac{1}{x}}\cdot3^{\frac{1}{x}}+4\cdot3^{\frac{2}{x}}=0\)

\(\Leftrightarrow4\cdot\left(3^{\frac{1}{x}}\right)^2-5\cdot2^{\frac{1}{x}}\cdot3^{\frac{1}{x}}-9\cdot2^{\frac{1}{x}}=0\)

xem pt trên là pt bậc hai ẩn 31/x, ta có: \(\Delta=\left(5\cdot2^{\frac{1}{x}}\right)^2-4\cdot4\cdot\left(-9\cdot2^{\frac{2}{x}}\right)=169\cdot2^{\frac{1}{x}}\)

\(3^{\frac{1}{x}}=\frac{5\cdot2^{\frac{1}{x}}-13\cdot2^{\frac{1}{x}}}{2\cdot4}=-2^{\frac{1}{x}}\) (loại)

\(3^{\frac{1}{x}}=\frac{5\cdot2^{\frac{1}{x}}+13\cdot2^{\frac{1}{x}}}{2\cdot4}=\frac{9}{4}\cdot2^{\frac{1}{x}}\Leftrightarrow3^{\frac{1}{x}-2}=2^{\frac{1}{x}-2}\Leftrightarrow\frac{1}{x}-2=0\Leftrightarrow x=\frac{1}{2}\)

 

NV
24 tháng 11 2019

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

NV
24 tháng 11 2019

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)

NV
15 tháng 11 2019

\(I_1=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=\frac{2}{\pi}\int cos\left(\frac{\pi x}{2}\right)d\left(\frac{\pi x}{2}\right)-\frac{1}{3}\int\frac{d\left(6x+5\right)}{6x+5}\)

\(=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)-\frac{1}{3}ln\left|6x+5\right|+C\)

\(I_2=-\frac{1}{2}\int\left(4-x^4\right)^{\frac{1}{2}}d\left(4-x^4\right)=-\frac{1}{2}.\frac{\left(4-x^4\right)^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{-\sqrt{\left(4-x^4\right)^3}}{3}+C\)

\(I_3=2\int e^{\frac{1}{2}\left(4+x^2\right)}d\left(\frac{1}{2}\left(4+x^2\right)\right)=2e^{\frac{1}{2}\left(4+x^2\right)}+C=2\sqrt{e^{4+x^2}}+C\)

\(I_4=-\frac{1}{2}\int\left(1-x^2\right)^{\frac{1}{3}}d\left(1-x^2\right)=-\frac{1}{2}.\frac{\left(1-x^2\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=-\frac{3}{8}\sqrt[3]{\left(1-x^2\right)^4}+C\)

\(I_5=\int e^{sinx}d\left(sinx\right)=e^{sinx}+C\)

\(I_6=\int\frac{d\left(1+sinx\right)}{1+sinx}=ln\left(1+sinx\right)+C\)

NV
15 tháng 11 2019

\(I_7=\int\left(x+1\right)\sqrt{x-1}dx\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow dx=2tdt\)

\(\Rightarrow I_7=\int\left(t^2+2\right).t.2t.dt=\int\left(2t^4+4t^2\right)dt=\frac{2}{5}t^5+\frac{4}{3}t^3+C\)

\(=\frac{2}{5}\sqrt{\left(1-x\right)^5}+\frac{4}{3}\sqrt{\left(1-x\right)^3}+C\)

\(I_8=\int\left(2x+1\right)^{20}dx\)

Đặt \(2x+1=t\Rightarrow2dx=dt\Rightarrow dx=\frac{1}{2}dt\)

\(\Rightarrow I_8=\frac{1}{2}\int t^{20}dt=\frac{1}{42}t^{21}+C=\frac{1}{42}\left(2x+1\right)^{21}+C\)

\(I_9=-3\int\left(1-x^3\right)^{-\frac{1}{2}}d\left(1-x^3\right)=-3.\frac{\left(1-x^3\right)^{\frac{1}{2}}}{\frac{1}{2}}+C=-6\sqrt{1-x^3}+C\)

\(I_{10}=\int\frac{x}{\sqrt{2x+3}}dx\)

Đặt \(\sqrt{2x+3}=t\Rightarrow x=\frac{1}{2}t^2-\frac{3}{2}\Rightarrow dx=t.dt\)

\(\Rightarrow I_{10}=\int\frac{\frac{1}{2}t^2-\frac{3}{2}}{t}.t.dt=\frac{1}{2}\int\left(t^2-3\right)dt=\frac{2}{3}t^3-\frac{3}{2}t+C\)

\(=\frac{2}{3}\sqrt{\left(2x+3\right)^3}-\frac{3}{2}\sqrt{2x+3}+C\)

NV
30 tháng 5 2019

a/ \(y'=18x-42x^5+7x^4=0\)

\(\Leftrightarrow x\left(42x^4-7x^3-18\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\42x^4-7x^3-18=0\end{matrix}\right.\)

Nói chung là ko giải được pt dưới nên nhường thầy giáo ra đề tự xử

b/ \(y'=\frac{4}{\left(x+2\right)^2}>0\) \(\forall x\ne-2\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(-\infty;-2\right)\)\(\left(-2;+\infty\right)\)

c/ \(y'=\frac{\left(4x+3\right)\left(2x+1\right)-2\left(2x^2+3x\right)}{\left(2x+1\right)^2}=\frac{4x^2+4x+3}{\left(2x+1\right)^2}=\frac{\left(2x+1\right)^2+2}{\left(2x+1\right)^2}>0\) \(\forall x\ne-\frac{1}{2}\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(-\infty;-\frac{1}{2}\right)\)\(\left(-\frac{1}{2};+\infty\right)\)

d/ \(y'=\frac{x^2-2x-\left(2x-2\right)\left(x-1\right)}{\left(x^2-2x\right)^2}=\frac{-x^2+2x-2}{\left(x^2-2x\right)^2}=\frac{-\left(x-1\right)^2-1}{\left(x^2-2x\right)^2}< 0\) \(\forall x\ne\left\{0;2\right\}\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;0\right)\)\(\left(0;2\right)\)\(\left(2;+\infty\right)\)

e/ \(y'=\frac{\left(2x-x^2\right)'}{2\sqrt{2x-x^2}}=\frac{1-x}{\sqrt{2x-x^2}}=0\Rightarrow x=1\)

\(y'>0\) khi \(0< x< 1\); \(y'< 0\) khi \(1< x< 2\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(0;1\right)\) và nghịch biến trên \(\left(1;2\right)\)

NV
20 tháng 4 2019

\(y'=x^2-\left(3m+2\right)x+2m^2+3m+1\)

\(\Delta=\left(3m+2\right)^2-4\left(2m^2+3m+1\right)=m^2\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+2+m}{2}=2m+1\\x_2=\frac{3m+2-m}{2}=m+1\end{matrix}\right.\)

Để hàm số có cực đại, cực tiểu \(\Rightarrow x_1\ne x_2\Rightarrow m\ne0\)

- Nếu \(m>0\Rightarrow2m+1>m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=m+1\\x_{CT}=2m+1\end{matrix}\right.\)

\(\Rightarrow3\left(m+1\right)^2=4\left(2m+1\right)\) \(\Rightarrow3m^2-2m-1=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{1}{3}< 0\left(l\right)\end{matrix}\right.\)

- Nếu \(m< 0\Rightarrow m+1>2m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=2m+1\\x_{CT}=m+1\end{matrix}\right.\)

\(\Rightarrow3\left(2m+1\right)^2=4\left(m+1\right)\Rightarrow12m^2+8m-1=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\frac{-2+\sqrt{7}}{6}>0\left(l\right)\\m=\frac{-2-\sqrt{7}}{6}\end{matrix}\right.\) \(\Rightarrow\sum m=\frac{4-\sqrt{7}}{6}\)

28 tháng 11 2016

ta có X =log(9,23/2)

TỪ ĐÓ THẤY X VÀO BIỂU THỨC THÌ TA RA ĐC ĐÁP ÁN .