K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(4x^2+12x+9\)

\(=4x^2+6x+6x+9\)

\(=2x\left(2x+3\right)+3\left(2x+3\right)\)

\(=\left(2x+3\right)^2\)

11 tháng 10 2020

a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )

b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )

c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )

d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )

e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )

f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )

22 tháng 7 2019

\(4x^4-21x^2y^2+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2\)

\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)

23 tháng 7 2019

\(x^5-5x^3+4x\)

\(=x\left(x^4-5x^2+4\right)\)

\(a,4x^4-21x^2y^2+y^4=\left(2x^2\right)^2+4x^2y^2+y^4-4x^2y^2-21x^2y^2\)

\(=\left(2x^2+y^2\right)^2-25x^2y^2\)

\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)

\(b,x^5-5x^3+4x=x\left(x^4-5x^2+4\right)\)

\(=x\left(x^4-4x^2-x^2+4\right)\)

\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]\)

\(=x\left(x^2-4\right)\left(x^2-1\right)\)

\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

\(c,x^3+5x^2+3x-9=x^3-x^2+6x^2-6x+9x-9\)

\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x^2+3x+3x+9\right)\)

\(=\left(x-1\right)\left[x\left(x+3\right)+3\left(x+3\right)\right]\)

\(=\left(x-1\right)\left(x+3\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

\(d,x^{16}+x^8-2=x^{16}+2x^8-x^8-2\)

\(=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)

\(=\left(x^8-1\right)\left(x^8+2\right)\)

22 tháng 7 2019

\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

\(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)

\(=\left(2x^4+2x^2+1\right)\left(4x^4-2x^2+1\right)\)

\(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)

\(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)

a) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

b) \(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)

c) \(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)

d) \(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)

17 tháng 6 2017

x3-x2+x+3=x3+1-x2+1+x+1

=(x+1)(x2+x+1)-(x2-1)+(x+1)

=(x+1)(x2+x+1)-(x+1)(x-1)+(x+1)

=(x+1)[(x2+x+1)-(x-1)+1]

=(x+1)(x2+x+1-x+1+1)

=(x+1)(x2+3)

26 tháng 7 2019

a) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)

b) \(x^3-6x^2+12x-8=\left(x-2\right)^3\)

c) \(x^2-2xy+y^2-16=\left(x-y\right)^2-4^2=\left(x-y+4\right)\left(x-y-4\right)\)

d) \(49-x^2+2xy-y^2=7^2-\left(x-y\right)^2=\left(7+x-y\right)\left(7-x+y\right)\)

19 tháng 7 2018

1)   \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

3)  \(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)

\(=abx^2+aby^2+a^2xy+b^2xy\)

\(=ax\left(bx+ay\right)+by\left(ay+bx\right)\)

\(=\left(ay+bx\right)\left(ax+by\right)\)

19 tháng 7 2018

4)  \(-12x^4y+12x^3y^2-3x^2y^3\)

\(=-3x^2y\left(4x^2-4xy+y^2\right)\)

\(=-3x^2y\left(2x-y\right)^2\)

23 tháng 10 2019

Câu hỏi của Access_123 - Toán lớp 8 - Học toán với OnlineMath