\(3x^3-14x^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2022

1:\(=3x^3-9x^2-5x^2+15x-x+3\)

\(=\left(x-3\right)\left(3x^2-5x-1\right)\)

2: \(=x^4-3x^3+x^2-3x^3+9x^2-3x+x^2-3x+1\)

\(=\left(x^2-3x+1\right)^2\)

23 tháng 12 2016

a, \(x^4+6x^3+7x^2-6x+1\)

\(=x^4-2x^2+1+6x^3+9x^2+6x\)

\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)

\(=\left(x^2-1+3x\right)^2\)

b, \(x^4-7x^3+14x^2-7x+1\)

\(=x^4+2x^2+1+7x^3+12x^2-7x\)

\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)

\(=\left(x^2-1+3x\right)^2\)

c, \(12x^2-11x-36\)

\(=12x^2-27x+16x-36\)

\(=3x\left(4x-9\right)+4\left(4x-9\right)\)

\(=\left(4x-9\right)\left(3x+4\right)\)

1 tháng 6 2018

Đặt \(H\left(x\right)=x^4-6x^3+12x^2-14x+3\)

Gỉa sử: \(H\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)

\(\Rightarrow\left\{{}\begin{matrix}a+c=-6\\d+ac+b=12\\ad+bc=-14\\bd=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2\\c=-4\\b=3\\d=-1\end{matrix}\right.\)

Vậy: \(H\left(x\right)=\left(x^2-2x+3\right)\left(x^2-4x+1\right)\)

1 tháng 6 2018

Tóm lại là:

\(x^4-6x^3+12x^2-14x+3\)

\(=x^4-4x^3+x^2+8x^2-2x+3x^2-12x+3\)

\(=x^2\left(x^2-4x+1\right)-2x\left(x^2-4x+1\right)+3\left(x^2-4x+1\right)\)

\(=\left(x^2-4x+1\right)\left(x^2-2x+3\right)\)

15 tháng 11 2016

c​âu c:x^4-2x^3-x^2+x^3-2x^2-x+5x^2-10x-5=x^2(x^2-2x-1)+x(x^2-2x-1)+5(x^2-2x-1)=(x^2-2x-1)(x^2+x+5)

4 tháng 11 2017

\(1.x^4+6x^3+11x^2+6x+1\)

\(=x^4+6x^3+9x^2+2x^2+6x+1\)

\(=x^4+9x^2+1+6x^3+2x^2+6x\)

\(=\left(x^2\right)^2+\left(3x\right)^2+1^2+2.x^2.3x+2.x^2.1+2.3x.1\)

\(=\left(x^2+3x+1\right)^2\)

\(2,6x^4+5x^3-38x^2+5x+6\)

\(=6x^4+6x^3+2x^3-3x^3-36x^2+2x^2-3x^2-x^2-12x+18x-x+6\)

\(=\left(6x^4+2x^3\right)+\left(6x^3+2x^2\right)-\left(3x^3+x^2\right)-\left(36x^2+12x\right)+\left(18x+6\right)-\left(3x^2+x\right)\)

\(=2x^3\left(3x+1\right)+2x^2\left(3x+1\right)-x^2\left(3x+1\right)-12x\left(3x+1\right)+6\left(3x+1\right)-x\left(3x+1\right)\)

\(=\left(3x+1\right)\left(2x^3+2x^2-x^2-12x+6-x\right)\)

\(=\left(3x+1\right)\left[\left(2x^3-x^2\right)+\left(2x^2-x\right)-\left(12x-6\right)\right]\)

\(=\left(3x+1\right)\left[x^2\left(2x-1\right)+x\left(2x-1\right)-6\left(2x-1\right)\right]\)

\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+x-6\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+3x-2x-6\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\left[\left(x^2+3x\right)-\left(2x+6\right)\right]\)

\(=\left(3x+1\right)\left(2x-1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)

\(=\left(3x+1\right)\left(2x-1\right)\left(x+3\right)\left(x-2\right)\)

4 tháng 11 2017

1. \(x^4+6x^3+11x^2+6x+1\)

\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

3. \(x^4-7x^3+14x^2-7x+1\)

\(=x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)

\(=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+14\right]\)

\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)

\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right).\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{1}{4}\right]\)

\(=x^2\left[\left(x+\dfrac{1}{x}-\dfrac{7}{2}\right)^2-\dfrac{1}{4}\right]\)

\(=\left(x^2+1-\dfrac{7}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2\)

\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)

Có thể phân tích thành HĐT tiếp hoặc không.

26 tháng 9 2018

      \(x^3-x^2-14x+24\)

\(=x^3-2x^2+x^2-2x-12x+24\)

\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)

\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)

\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

      \(x^4+x^3+2x-4\)

\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)

\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)

\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)

      \(8x^4-2x^3-3x^2-2x-1\)

\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)

\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)

\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)

\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)

\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)

\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)

      \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

Chúc bạn học tốt.

3 tháng 9 2016

Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)

Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)

Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)

\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)

Dùng phương pháp hệ số bất định :

\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)

Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)