Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
bạn để ý trong ngoăcj có +2b^2c^2 đó bạn
Vì +2b^2c^2 - 4b^2c^2 = -2b^2c^2
\(B=a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)
\(=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)
\(=\left(a^2-b^2-c^2\right)-\left(2bc\right)^2\)
\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)
\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)
\(=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)
Vì a,b,c là độ dài 3 cạnh tam giác nên:
b+c>a => a-(b+c) < 0 => a-b-c < 0
a+b+c > 0
a+c>b => a+c-b > 0 => a-b+c > 0
a+b>c => a+b-c > 0
Do đó (a-b-c)(a+b+c)(a-b+c)(a+b-c) < 0 hay B<0 (đpcm)
\(x^5-4x^3-5x\)
\(=x\left(x^4-4x^2-5\right)\)
\(=x\left(x^4-5x^2+x^2-5\right)\)
\(=x\left[x^2\left(x^2-5\right)+\left(x^2-5\right)\right]\)
\(=x\left(x^2+1\right)\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)
a/
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2.\)
=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ac\right)^2\)
=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2-4\left(ca\right)^2\)
áp dụng hằng đẳng thức \(a^2-b^2-c^2=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2\) ta đc
\(\left(a^2-b^2+c^2\right)-4\left(ac\right)^2\)
=> \(\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)
2a2b2+2b2c2+2a2c2-a4-b4-c4
=4a2c2-(a4+b4+c4-2a2b2+2a2c2-2b2c2)
=4a2c2-(a2-b2+c2)2
=(2ac+a2-b2+c2)(2ac-a2+b2-c2)
=[(a+c)2-b2][b2-(a-c)2]
=(a+b+c)(a+c-b)(b+a-c)(b-a+c)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a^4+b^4+c^4-2a^2b^2+2b^2c^2-2a^2c^2-4b^2c^2
=(a^2-b^2-c^2)-4b^2c^2
=(a^2-b^2-c^2-2bc)(a^2-b^2-c^2+2bc)
=(a-b-c)(a+b+c)(a-b+c)(a+b-c)
=2ab.[a+2b]+c^2.[a+2b]- c.[a^2+4ab+4.b^2]
=.................................-c[a+2b]^2
=[a+2b].{2ab+c^2-ca-2bc]
=[a+2b]{ 2b.[a-c]-c.[a-c] }
=[a+2b].[a-c].[2b-c]
\(\left(a-b-c\right)^2\)