Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ( x - 3 ) . ( x - 4 ) = 0
=> x - 3 = 0 hoặc x - 4 = 0
Nếu x - 3 = 0 => x = 3
Nếu x - 4 = 0 => x = 4
b, (\(\frac{1}{2}\)x - 4 ) . ( x - \(\frac{1}{4}\)) = 0
=>( \(\frac{1}{2}\)x - 4 ) = 0 Hoặc ( x - \(\frac{1}{4}\)) = 0
Nếu ( \(\frac{1}{2}\)x - 4 ) = 0 => x = \(\frac{8}{1}\)
Nếu ( x - \(\frac{1}{4}\)) = 0 => x = \(\frac{1}{4}\)
c, (\(\frac{1}{3}\)- x ) . ( \(\frac{1}{2}\)+ 1 : x ) = 0
=> ( \(\frac{1}{3}\)- x ) = 0 Hoặc ( \(\frac{1}{2}\)+ 1 : x ) = 0
Nếu (\(\frac{1}{3}\)- x ) = 0 => x = \(\frac{1}{3}\)
Nếu ( \(\frac{1}{2}\)+ 1 : x ) = 0 => x = \(\frac{-2}{1}\)
d, ( x + 3 ) . ( x - 4 ) + 2.(x + 3 ) = 0
=> (X + 3 ) = 0 Hoặc ( x - 4 ) = 0 Hoặc 2. ( x + 3 ) = 0
Nếu x + 3 = 0 => x = 0
Nếu ( x - 4 ) = 0 => x = 4
Nếu 2.(x + 3) = 0 => x = 3
# Cụ MAIZ
a. ( x - 3 ) ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
b. \(\left(\frac{1}{2}x-4\right)\left(x-\frac{1}{4}\right)=0\)
<=> \(\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)
Bài làm :
\(a\text{)}...\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
\(b\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=0+\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)
\(c\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1\div x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-0\\1\div x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)
\(d\text{)}...\Leftrightarrow\left(x+3\right)\left(x-4+2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Bài làm :
\(a\text{)}...\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
\(b\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=0+\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)
\(c\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1\div x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-0\\1\div x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)
\(d\text{)}...\Leftrightarrow\left(x+3\right)\left(x-4+2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
a)\(\frac{1}{2}x+2\frac{1}{2}=3\frac{1}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x=-\frac{3}{4}-\frac{5}{2}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:\left(-3\right)\)
\(\Leftrightarrow x=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\Leftrightarrow x=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\Leftrightarrow x=-\frac{6}{11}\)
a, \(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{524}+1+\frac{x+329}{5}+\frac{20}{5}-4=0\)
\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
=> x+329=0 => x= -329
b. tương tụ
c, x=0, x=4
b) để \(\left(x-7\right)^{x+2015}-\left(x-7\right)^{x+2016}=0\)
thì \(\left(x-7\right)^{x+2015}=\left(x-7\right)^{x+2016}\)
mà \(x+2015
nên \(x-7=x-7\Rightarrow x=7\)
bài a)
|2x+3|=x+2
2x+3=x+2 hoặc -(2x+3)=x+2
2x-x=2-3 -2x-3=x+2
1x=-1 -2x-x=2+3
x=-1 -3x =5
x=\(\frac{-5}{3}\)
a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)\(\Rightarrow x=\frac{5}{6}\)
b, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
Giải: \(\left(x-1\right)^4=1\)\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
c, Vì \(\left(x+20\right)^{100}\ge0\)\(\forall x\inℝ\); \(\left|y+4\right|\ge0\)\(\forall y\inℝ\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)\(\forall x,y\inℝ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
d, \(2^{x-1}=16\)\(\Rightarrow2^{x-1}=2^4\)=> x - 1 = 4 => x = 5
Bài làm :
\(a,\left(x-3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
\(b,\left(\frac{1}{2}x-4\right)\left(x-\frac{1}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)
\(c,\left(\frac{1}{3}-x\right).\left(\frac{1}{2}+1:x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1:x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)
\(d,\left(x+3\right)\left(x-4\right)+2\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-4+2\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Học tốt nhé