Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\left(1\right)\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{x+y+x-y}{\frac{1}{35}+\frac{1}{210}}=\frac{2x}{\frac{1}{30}}=2x.30=60x\left(2\right)\)
Từ (1) và (2) suy ra \(60x=\frac{xy}{\frac{1}{12}}=>\frac{60x}{xy}=\frac{1}{12}=< \frac{60}{y}=\frac{1}{12}=>y=720\)
Thay y=720 vào (1),ta có: \(\frac{x+720}{\frac{1}{35}}=\frac{x-720}{\frac{1}{210}}=>\left(x+720\right).35=\left(x-720\right).210=>35x+25200=210x-151200\)
\(=>x=1008\)
Vậy x=2008;y=720
\(35\left(x+y\right)=210\left(x-y\right)=12xy\)
\(\Rightarrow\)\(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12xy}{420}\)
\(\Rightarrow\)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{xy}{35}\)( 1 )
\(\Rightarrow\)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{x}{7}\) ( 2 )
\(\Rightarrow\)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{y}{5}\) ( 3 )
Từ ( 1 ) ; ( 2 ) => x=7
Từ ( 1 ) ; ( 3 ) => y = 5
chứng minh rằng: x12-x9+x4-x+1 nhận giá trị dương với mọi x
35(x+y) = 210(x-y) = 12xy
=> 35(x+y) /420 = 210(x-y) / 420 = 12xy / 420
=> (x+y) / 12 = (x-y) / 2 = xy/35 (1)
=> (x+y) / 12 = (x-y) / 2 = (x+y+x-y)/12+2 = x/7 (2)
=> (x+y)/12 = (x-y)/2 = (x+y-x+y)/12-2 = y/5 (3)
Từ (1) và (2) = > x = 7
Từ (1) và (3) suy ra y = 5
P/s: Ủng hộ nha
Ta có tổng, hiệu ,tích tỉ lệ nghịch với 35,210,12
=> 35(x+y)=210(x-y)=12xy
=>35x+35y=210x-210y
=> 245y= 175x
=> x/y = 1,4
=> x=1,4y
=> 84y =16,8y^2
=> y= 5 ;
=> x= 7
Ta có: 35(x+y)=210(x-y)=12xy
Suy ra: x+y/12=x-y/2=xy/35
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x+y/12=x-y/2=(x+y)+(x-y)/12+2=(x+y)-(x-y)/12-2=x/7=y/5
Ta lại có:
x/7=y/5=xy/35
xy/35=x/7
y=5
Suy ra: x=7
-Gọi hai số cần tìm là a,b
_Do tổng hiệu và tích ccuar chúng tỉ lệ nghịch với 35,210,12
=>35.(a+b)=210.(a-b)=12.(a.b)
=>35a+35b=210a-210b
=>35a-210a=-35b-210b
=>-175a=-245b =>a/b=-245/175=7/5
vậy a=7;b=5
1
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)
=> M ko là số tự nhiên
2
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)
3
\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)
\(\Rightarrow35x+35y=2010x-2010y\)
\(\Rightarrow35-2010x=2010y-35y\)
\(\Rightarrow-175x=-245y\)
\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\)
\(\Rightarrow x=7k;y=5k\)
\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)
\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)
Vậy \(x=7;y=5\)
bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3*
Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath
+tổng của chúng là (x + y)
+hiệu của chúng là ( x-y )
+ tích của chúng là xy
Biết tổng,hiệu và tích của chúng tỉ lệ nghịch với 35, 210, và 12 ,
Tức là : 35(x + y) = 210(x - y) = 12xy
Hay:
và (x - y) : xy = 12 : 210 => 12xy = 210(x - y) => (x - y) = 2xy352xy35 (2)
Từ (1) ta có:
Từ (1) ta lại có:
Từ (2) & (3) suy ra:
Từ (2) & (4) suy ra:
Vậy x = 7 và y = 5