\(E=\frac{x}{\left(x+2010\right)^2}\)

Giúp vớ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Đặt \(t=\frac{1}{x+2010}\Rightarrow x=\frac{1}{t}-2010\)

Ta có: \(E=x\cdot\frac{1}{\left(x+2010\right)^2}=\left(\frac{1}{t}-2010\right)t^2=t-2010t^2\)

\(=-2010\left(t^2-t\cdot\frac{1}{2010}\right)=-2010\left(t^2-2t\cdot\frac{1}{4020}+\frac{1}{4020^2}\right)+\frac{1}{8040}\)

\(=-2010\left(t-\frac{1}{4020}\right)^2+\frac{1}{8040}\le\frac{1}{8040}\)

Dấu "=" xảy ra <=> \(t=\frac{1}{4020}\Leftrightarrow x=2010\)

3 tháng 1 2020

\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1-\left(\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{x^2y^2}\right)=1-\frac{x^2+y^2-1}{x^2y^2}\)

\(B=1-\frac{\left(x+y\right)^2-2xy-1}{x^2y^2}=1-\frac{-2xy}{x^2y^2}=1+\frac{2}{xy}\)

Cô-si : \(1=x+y\ge2\sqrt{xy}\Leftrightarrow xy\le\frac{1}{4}\)

\(\Rightarrow B\ge1+\frac{2}{\frac{1}{4}}=9\)

Vậy B có GTNN bằng 9 khi x = y = \(\frac{1}{2}\)

10 tháng 12 2021

Theo đề bài, ta có:

x3+y3=x2−xy+y2x3+y3=x2−xy+y2

hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0

⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1

+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52

+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4

Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

1 tháng 11 2022

\(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

\(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt \(\hept{\begin{cases}x+1=u\\y-2=v\end{cases}}\Rightarrow A=\sqrt{u^4+1}+\sqrt{v^4+1}\)(với \(u,v\inℝ\))

Điều kiện đã cho ban đầu trở thành \(\left(u+1\right)\left(v+1\right)=\frac{9}{4}\)

\(\Leftrightarrow uv+u+v+1=\frac{9}{4}\Leftrightarrow uv+u+v=\frac{5}{4}\)

Ta có: \(\hept{\begin{cases}\left(2u-1\right)^2\ge0\forall u\inℝ\\\left(2v-1\right)^2\ge0\forall v\inℝ\end{cases}}\Leftrightarrow\hept{\begin{cases}4u^2-4u+1\ge0\\4v^2-4v+1\ge0\end{cases}}\forall u,v\inℝ\)

\(\Rightarrow\hept{\begin{cases}4u^2+1\ge4u\\4v^2+1\ge4v\end{cases}}\Rightarrow u^2+v^2\ge u+v-\frac{1}{2}\forall u,v\inℝ\)(*)

và \(\left(u-v\right)^2\ge0\forall u,v\inℝ\Leftrightarrow u^2-2uv+v^2\ge0\forall u,v\inℝ\)

\(\Rightarrow u^2+v^2\ge2uv\forall u,v\inℝ\Leftrightarrow\frac{1}{2}\left(u^2+v^2\right)\ge uv\forall u,v\inℝ\)(**)

Cộng theo vế của (*) và (**), ta được: \(\frac{3}{2}\left(u^2+v^2\right)\ge uv+u+v-\frac{1}{2}=\frac{5}{4}-\frac{1}{2}=\frac{3}{4}\)

\(\Rightarrow u^2+v^2\ge\frac{1}{2}\)(**

Áp dụng bất đẳng thức Minkowski, ta được:

\(A=\sqrt{u^4+1}+\sqrt{v^4+1}\ge\sqrt{\left(u^2+v^2\right)^2+\left(1+1\right)^2}\)

\(=\sqrt{\left(u^2+v^2\right)^2+4}\ge\sqrt{\left(\frac{1}{2}\right)^2+4}=\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)

Đẳng thức xảy ra khi \(u=v=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{5}{2}\)

Vậy GTNN của A là \(\frac{\sqrt{17}}{2}\)đạt được khi \(x=-\frac{1}{2};y=\frac{5}{2}\)

24 tháng 2 2020

Đặt \(a=2+x;b=y-1\) thì \(ab=\frac{9}{4}\)

Thì \(\sqrt{x^4+4x^3+6x^2+4x+2}=\sqrt{a^4-4a^3+6a^2-4a+2}\)

và \(\sqrt{y^4-8y^3+24y^2-32y+17}=\sqrt{b^4-4b^3+6b^2-4b+2}\) (cái này dùng phương pháp đồng nhất hệ số là xong)

Vậy ta tìm Min \(A=\sqrt{a^4-4a^3+6a^2-4a+2}+\sqrt{b^4-4b^3+6b^2-4b+2}\)

\(=\sqrt{\left(a^4-4a^3+4a^2\right)+2\left(a^2-2a+1\right)}+\sqrt{\left(b^4-4b^3+4b^2\right)+2\left(b^2-2b+1\right)}\)

\(=\sqrt{\left(a^2-2a\right)^2+\left[\sqrt{2}\left(a-1\right)\right]^2}+\sqrt{\left(b^2-2b\right)^2+\left[\sqrt{2}\left(b-1\right)\right]^2}\)

\(\ge\sqrt{\left(a^2+b^2-2a-2b\right)^2+2\left(a+b-2\right)^2}\)

\(\ge\sqrt{\left[\frac{\left(a+b\right)^2}{2}-2\left(a+b\right)\right]^2+2\left(a+b-2\right)^2}\)

\(=\sqrt{\left(\frac{t^2}{2}-2t\right)^2+2\left(t-2\right)^2}\left(t=a+b\ge2\sqrt{ab}=3\right)\)

\(=\sqrt{\frac{1}{4}\left(t-1\right)\left(t-3\right)\left(t^2-4t+5\right)+\frac{17}{4}}\ge\frac{\sqrt{17}}{2}\)

Trình bày hơi lủng củng, sr.

26 tháng 3 2021

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{-2m-8}{1}=4m+8\\x_1x_2=\frac{c}{a}=m^2-8\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=4m+8\Rightarrow x_1^2+x_2^2=4m+8-2x_1x_2\)

\(\Rightarrow x_1^2+x_2^2=4m+8-2\left(m^2-8\right)=4m+8-2m^2+16=4m+24-2m^2\)

hay \(A=-2m^2+4m+24-\left(x_1+x_2\right)\)

\(=-2m^2+4m+24-4m-8=-2m^2+16\le16\)

Dấu ''='' xảy ra khi m = 0