K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Ta có:

\(\frac{-3}{4}=\frac{-15}{20}< \frac{-7}{20}\Rightarrow\frac{-3}{4}< \frac{-7}{20}\)

b,Ta có:\(\frac{-7}{8}< 1< \frac{30}{-42}\Rightarrow\frac{-7}{8}< \frac{30}{-42}\)

Thank:)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)

18 tháng 8 2020

Ta có :\(C=\frac{20^{10}+1}{20^{10}-1}\)

=> \(C-1=\frac{20^{10}+1-\left(20^{10}-1\right)}{20^{10}-1}=\frac{2}{20^{10}-1}\)

Lại có D = \(\frac{20^{10}-1}{20^{10}-3}\)

=> D - 1 = \(\frac{20^{10}-1-\left(20^{10}-3\right)}{20^{10}-3}=\frac{2}{20^{10}-3}\)

Vì \(20^{10}-1>20^{10}-3\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{2^{10}-3}\Rightarrow C-1< D-1\Rightarrow C< D\)

Có : \(C=\frac{20^{10}+1}{20^{10}-1}\)

< = > \(C-1=\frac{20^{10}+1-\left(20^{10}-1\right)=\frac{2}{20^{10}-1}}{20^{10}-1}\)

có D \(\frac{20^{10}-1}{20^{10}-3}\)

=> D - 1 = \(\frac{20^{10}-1\left(20^{10}-3\right)}{20^{10}-3}=\frac{2}{20^{10}-3}\)

25 tháng 12 2018

XD: best tiếng anh chuyển sang toán ak!?

\(B1:\)

\(M=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)...\left(1+\frac{7}{10800}\right)\)

\(=\frac{16}{9}\cdot\frac{27}{20}\cdot\frac{40}{33}\cdot\cdot\cdot\frac{10807}{10800}\)

\(=\frac{8.2}{9.1}\cdot\frac{9.3}{10.2}\cdot\frac{10.4}{11.3}\cdot\cdot\cdot\frac{57.51}{58.50}\)

\(=\frac{\left(8.9.10...57\right)\left(2.3.4...51\right)}{\left(9.10.11...58\right).\left(1.2.3...50\right)}\)

\(=\frac{8.51}{58.1}=\frac{204}{29}\)

Vậy.....

25 tháng 12 2018

\(M=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)...\left(1+\frac{7}{10800}\right)\)

\(M=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}...\frac{10807}{10800}\)

\(M=\frac{8.2}{9.1}.\frac{9.3}{10.2}.\frac{10.4}{11.3}...\frac{107.101}{108.100}\)

\(M=\frac{\left(2.3.4...101\right)\left(8.9.10...107\right)}{\left(1.2.3...100\right)\left(9.10.11...108\right)}\)

\(M=\frac{101.8}{108}\)

\(M=\frac{202}{27}\)

k mình nha . câu 2 tí nữa mình gửi

8 tháng 5 2019

Bằng nhau

8 tháng 5 2019

Tại sao lại bằng nhau

29 tháng 5 2019

#)Giải :

Câu 1 :

Đặt \(A=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)

\(\Rightarrow A>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)( 8 số hạng )

\(\Rightarrow A>\frac{8}{27}=\frac{8}{27}\)

\(\Rightarrow A>\frac{8}{27}\)

        #~Will~be~Pens~#

Câu 1:(trội)

Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\left(đpcm\right)\)

 Câu 2:\(D=\frac{2^{25}.3^{15}+3^{15}.5.2^{26}}{2^{25}.3^{17}+3^{15}.2^{25}}=\frac{2^{25}3^{15}\left(1+5.2\right)}{2^{25}3^{15}\left(3^2+1\right)}=\frac{11}{10}\)