Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có (am)n = am.am...am (định nghĩa) (có n thừa số am)
= am + m + .... + m (có n hạng tử m)
= am.n (đpcm)
b) Ta có 5333 = 53.111 = (53)111 = 125111
3555 = 35.111 = (35)111 = 243111
Nhận thấy 125 < 243
=> 125111 < 243111
=> 5333 < 3555
b) Ta có 2400 = 24.100 = (24)100 = 16100
4200 = 42.100 = (42)100 = 16100
=> 2400 = 4200 (= 16100)
\(a,3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Có \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
\(b,5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(2^{500}=\left(2^5\right)^{100}=32^{100}>25^{100}=5^{200}\)
b , Áp dụng và so sánh :
3^200 và 2^300
3^200 = ( 3^2 )^100 = 9^100
2^300 = ( 2^3 )^100 = 8^100
Vì 9^100 > 8^100 => 3^200 > 2^300
Vậy 3^200 > 2^300
5^200 và 2^500
5^200 = ( 5^2 )^100 = 25^100
2^500 = ( 2^5 )^100 = 32^100
Vì 26^100 < 32^100 => 5^200 < 2^500
Vậy 5^200 < 2^500
Ta có: \(\frac{n}{n+1}=1-(\frac{1}{n+1})\)
\(\frac{n+2}{n+3}=1-(\frac{1}{n+3})\)
\(\Rightarrow\)\(\frac{n}{n+1}< \frac{n+2}{n+3}\)
1.a. 2S=\(2+2^2+2^3+...+2^{10}\)
2S -S=(\(2+2^2+2^3+...+2^{10}\)) - (1+2+22+...+29)
S= 210 -1
Xin lỗi bạn mình k làm đầy đủ đc ạ :
2) a) Vì (x-3)(2y+1) = 7
=> x-3 và 2y + 1 \(\in\)Ư(7) = { 1;7}
Ta có bảng :
x-3 | 1 | 7 |
x | 4 | 10 |
2y+1 | 7 | 1 |
y | 3 | 0 |
Vậy...
b) (2x+1)(3y-2) = -55
=> 2x +1 và 3y - 2 \(\in\)Ư(-55) = { 1; 5 ; 11 ; 55}
Ta có bảng :
2x+1 | 1 | 55 | 5 | 11 | |||
x | 0 | 27 | 2 | 5 | |||
3y-2 | 55 | 1 | 11 | 5 | |||
y | 19 | 1 | ktm | ktm |
Sr kẻ bảng thừa cột :))
Vậy...
a) \(\frac{21}{52}=\frac{210}{520}=1-\frac{310}{520}\)
\(\frac{213}{523}=1-\frac{310}{523}\)
Vì \(520< 523\)\(\Rightarrow\frac{1}{520}>\frac{1}{523}\)\(\Rightarrow\frac{310}{520}>\frac{310}{523}\)
\(\Rightarrow1-\frac{310}{520}< 1-\frac{310}{523}\)
hay \(\frac{21}{52}< \frac{213}{523}\)
b) \(\frac{1515}{9797}=\frac{15.101}{97.101}=\frac{15}{97}\); \(\frac{171171}{991991}=\frac{171.1001}{991.1001}=\frac{171}{991}\)
Ta có: \(\frac{15}{97}=\frac{150}{970}=1-\frac{820}{970}\); \(\frac{171}{991}=1-\frac{820}{991}\)
Vì \(970< 991\)\(\Rightarrow\frac{1}{970}>\frac{1}{991}\)\(\Rightarrow\frac{820}{970}>\frac{820}{991}\)
\(\Rightarrow1-\frac{820}{970}< 1-\frac{920}{991}\)
hay \(\frac{1515}{9797}< \frac{171171}{991991}\)
c) \(\frac{n+2}{n+3}=1-\frac{1}{n+3}\); \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Vì \(n\inℕ^∗\)\(\Rightarrow n+3< n+4\)\(\Rightarrow\frac{1}{n+3}>\frac{1}{n+4}\)
\(\Rightarrow1-\frac{1}{n+3}< 1-\frac{1}{n+4}\)
hay \(\frac{n+2}{n+3}< \frac{n+3}{n+4}\)
d) \(\frac{n+7}{n+6}=1+\frac{1}{n+6}\); \(\frac{n+1}{n}=1+\frac{1}{n}\)
Vì \(n\inℕ^∗\)\(\Rightarrow n+6>n\)\(\Rightarrow\frac{1}{n+6}< \frac{1}{n}\)
\(\Rightarrow1+\frac{1}{n+6}< 1+\frac{1}{n}\)
hay \(\frac{n+7}{n+6}< \frac{n+1}{n}\)
Xét a>b thì:
\(am>bm\Rightarrow ab+am>ab+bm\)
\(\Rightarrow a\left(b+m\right)>b\left(a+m\right)\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Xét a=b thì \(a+m=b+m\Rightarrow\frac{a}{b}=\frac{a+m}{b+m}\)
Xét a<b thì \(am< bm\Rightarrow ba+am< ba+bm\)
\(\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
@Phan Gia Huy@Từ a> b không thể suy ra am > bm
Vì nếu như m âm thì bất đẳng thức sẽ đổi chiều.Kể cả trường hợp dưới
Mk chỉ góp ý thôi
`3^(2 + n) và 2^(3 + n) `
`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`
`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`
ta thấy `9>8 ; 3^n > 2^n `
vậy `3^(2 + n) > 2^(3 + n) `
\(\left\{{}\begin{matrix}3^{2+n}=3^2\times3^n=9\times3^n\\2^{3+n}=2^3\times2^n=8\times2^n\end{matrix}\right.\)
ta có
\(\left\{{}\begin{matrix}9>8\\3^n>2^n\end{matrix}\right.\)
\(=>3^{2+n}>2^{3+n}\)