Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 290>289
<=> \(\sqrt{290}\) > \(\sqrt{289}\)
<=> \(\sqrt{290}\) > 17
Vậy ..........
\(a,290>289\)
\(\Rightarrow\sqrt{290}>\sqrt{289}\)
\(\Rightarrow\sqrt{290}>17\)
\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(-\frac{9}{5}=\frac{-54}{30},\frac{11}{-6}=-\frac{55}{30}\)
\(-\frac{54}{30}>-\frac{55}{30}\Rightarrow-\frac{9}{5}>-\frac{11}{6}\)
\(-\frac{6}{11}=-\frac{30}{55}\)
Vì 2 < 3 và 22 < 32 => 222 < 332
3111<3211. Mà 3211=(25)11=255.
=>3111<255.
1714>1614. Mà 1614=(24)14=256.
Mà 255<256=>3111<255<256<1714=>3111<1714.
222 và 322
Vì 2 < 3; 22 < 32 nên 222 < 332
3111 và 1714
3111 = 319 . 312
1714 = 179 . 175
Mà 179 < 319 , 175 > 312 nên 3111 < 1714
\(31^{11}\)và \(17^{14}\)
Ta có :
\(31^{11}< 32^{11}=\left(4.8\right)^{11}=4^{11}.8^{11}=2^{22}.8^{11}\)
\(17^{14}>16^{14}=2^{14}.8^{14}=2^{14}.8^3.8^{11}=2^{14}.2^9.8^{11}=2^{23}.8^{11}\)
Ta có : \(2^{23}.8^{11}>2^{22}.8^{11}\), nên \(16^{14}>32^{11}\)
Vậy \(17^{14}>16^{14}>32^{11}>31^{11}\Rightarrow17^{14}>31^{11}\)
a) \(63^7\)và \(16^{12}\)
Có \(63^7< 64^7=\left(2^6\right)^7=2^{42}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\)=) \(63^7< 16^{12}\)
b) \(17^{14}\)và \(31^{11}\)
Có \(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
Vì \(2^{56}>2^{55}\Rightarrow17^{14}>16^{14}>32^{11}>31^{11}\)
=) \(17^{14}>31^{11}\)
c) \(2^{67}\)và \(5^{21}\)
Có \(5^{21}< 8^{21}=\left(2^3\right)^{21}=2^{63}\)
Vì \(2^{67}>2^{63}\Rightarrow2^{67}>8^{21}>5^{21}\)
=) \(2^{67}>5^{21}\)
a) 3\(^{21}\) = (3\(^7\))\(^3\) = 2187\(^3\)
2\(^{31}\) < 2\(^{33}\) = (2\(^{11}\))\(3\) = 2048\(^3\)
\(\Rightarrow\) 3\(^{21}\) > 2\(^{33}\)
\(\Rightarrow3^{21}>2^{31}\)
\(Ta\)\(có\)\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
\(Mà\)\(125^{12}>121^{12}\)
\(=>5^{36}>11^{24}\)
Ta có:
\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
\(Do125>121\)
\(\Rightarrow125^{12}>121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)