K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2015

Vì 1320+1/1319+1>1

=>1320+1/1319+1>1320+1+12/1319+1+12 

Ta có: 1320+1+12/1319+12

         = 1320+13/1319+13

         =13(1319+1)/13(1318+1)

        = 1319+1/1318+1

 => 1320+1/1319+1> 1319+1/1318+1 

Vậy A<B                              

 

29 tháng 4 2015

 

\(B=\frac{13^{20}+1}{13^{19}+1}>1\)

\(B=\frac{13^{20}+1}{13^{19}+1}>\frac{13^{20}+1+12}{13^{19}+1+12}\)

\(B=\frac{13^{20}+13}{13^{19}+13}=\frac{13\left(13^{19}+1\right)}{13\left(13^{18}+1\right)}\)

\(B=\frac{13^{19}+1}{13^{18}+1}=A\)

\(\Rightarrow B>A\)

 

 

27 tháng 2 2019

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Bài làm

Ta có: 

\(\frac{1}{11}>\frac{1}{20}\)\(\frac{1}{12}>\frac{1}{20}\)\(\frac{1}{13}>\frac{1}{20}\)\(\frac{1}{14}>\frac{1}{20}\)\(\frac{1}{15}>\frac{1}{20}\)\(\frac{1}{16}>\frac{1}{20}\)\(\frac{1}{17}>\frac{1}{20}\)\(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)

=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)

hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)

=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Do đó: \(S=\frac{1}{2}\)

# Chúc bạn học tốt #

26 tháng 4 2017

\(\dfrac{1}{13}A=\dfrac{13^{19}+1}{13^{19}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{19}+\dfrac{1}{13}}\)

\(\dfrac{1}{13}B=\dfrac{13^{20}+1}{13^{20}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)

\(\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< \dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\Rightarrow1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< 1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)

\(\Rightarrow\dfrac{1}{13}A>\dfrac{1}{13}B\Rightarrow A>B\)

Vậy...

27 tháng 4 2017

Ta xét hiệu:

\(A-1=\dfrac{3^{19}+1}{3^{18}+1}-1=\dfrac{3^{19}-3^{18}}{3^{18}+1}=\dfrac{3^{18}.2}{3^{18}+1}\)

\(B-1=\dfrac{3^{20}+1}{3^{19}+1}-1=\dfrac{3^{20}-3^{19}}{3^{19}+1}=\dfrac{3^{19}.2}{3^{19}+1}\)

Xét: \(\dfrac{A-1}{B-1}=\dfrac{3^{18}.2}{3^{18}+1}\cdot\dfrac{3^{19}+1}{3^{19}.2}=\dfrac{3^{19}+1}{\left(3^{18}+1\right).3}=\dfrac{3^{19}+1}{3^{19}+3}< 1\)

=> A-1<B-1

=>A<B

21 tháng 2 2017

Ta có:

\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

Vậy S > \(\frac{1}{2}\)

21 tháng 2 2017

1/2 lớn hơn S, xin lỗi tớ không biết cách viết phân số

5 tháng 4 2019

1/ \(\frac{3}{5}=\frac{60}{100}=60\%\)

\(\frac{9}{12}=\frac{75}{100}=75\%\)

5 tháng 4 2019

2/     \(18\frac{13}{19}+31\frac{8}{19}-\frac{2}{19}\)

\(=18\frac{13}{19}+31\frac{6}{19}\)

\(=\left(18+31\right)\frac{13}{19}+\frac{6}{19}\)

\(=49\frac{19}{19}\)

12 tháng 5 2018

(1/12+3 1/6-30,75).x -8 = (3/5+0,415+1/200):0,01

(1/12+19/6-123/4).x-8=(3/5+83/200+1/200):1/100

-55/2.x-8=51/50:1/100

-55/2.x-8=102

-55/2.x=102+8=110

x=110:-55/2=-4

13 tháng 5 2018

Bạn không làm được bài 2 phần A à?

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)

2 tháng 3 2019

 a ,  \(A=\frac{19^{30}+1}{19^{31}+1}\Rightarrow19A=\frac{19^{31}+19}{19^{31}+1}=\frac{19^{31}+1+18}{19^{31}+1}=1+\frac{18}{19^{31}+1}\)

     \(B=\frac{19^{31}+1}{19^{32}+1}\Rightarrow19B=\frac{19^{32}+19}{19^{32}+1}=\frac{19^{32}+1+18}{19^{32}+1}=1+\frac{18}{19^{32}+1}\)

Vì \(19A< 19B\Leftrightarrow A< B\)

b, câu b tương tự nha

2 tháng 3 2019

sửa lại chút nha :

do : \(\frac{18}{19^{31}+1}>\frac{18}{19^{32}+1}\Rightarrow1+\frac{18}{19^{31}+1}>1+\frac{18}{19^{32}+1}\)

\(\Rightarrow19A< 19B\Leftrightarrow A< B\)

30 tháng 3 2018

Đặt S=1/12+1/13+1/14+1/15+...+1/23

ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)

đặt A=1/12+1/13+1/14+...+1/17

ta có

1/13<1/12

1/14<1/12

..........................

.........................

1/17<1/12

=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)

=>A<1x6/12

=>A<1/2 (1)

Đặt B=1/18+1/19+...+11/23

ta có

1/19<1/18

1/20<1/18

...........................

..........................

1/23<1/18

=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)

=>B<1x 6/18

=>B<1/3      (2)

từ 1 và 2 =>S=A+B<1/2+1/3

=>S<5/6 (dpcm)

k cho mình nhé

30 tháng 3 2018

Đặt S=1/12+1/13+1/14+1/15+...+1/23

ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)

đặt A=1/12+1/13+1/14+...+1/17

ta có

1/13<1/12

1/14<1/12

..........................

.........................

1/17<1/12

=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)

=>A<1x6/12

=>A<1/2 (1)

Đặt B=1/18+1/19+...+11/23

ta có

1/19<1/18

1/20<1/18

...........................

..........................

1/23<1/18

=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)

=>B<1x 6/18

=>B<1/3      (2)

từ 1 và 2 =>S=A+B<1/2+1/3

=>S<5/6 (dpcm)

k cho mình nhé