Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\frac{x+1+\sqrt{x}}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right)\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)\(=\frac{x+\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b) \(M>3\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}>3\Leftrightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}-3>0\)
\(\Leftrightarrow\frac{x+\sqrt{x}+1-3\left(\sqrt{x}-1\right)}{\sqrt{x}-1}>0\Leftrightarrow\frac{x+\sqrt{x}+1-3\sqrt{x}+3}{\sqrt{x}-1}>0\)\(\Leftrightarrow\frac{x-2\sqrt{x}+4}{\sqrt{x}-1}>0\)
Ta có: \(x-2\sqrt{x}+4=x-2\sqrt{x}+1+3=\left(\sqrt{x}-1\right)+3>0\)\(\Rightarrow\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)
Vậy x>1
c) \(M=7\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=7\Rightarrow x+\sqrt{x}+1=7\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow x+\sqrt{x}+1=7\sqrt{x}-7\Leftrightarrow x-6\sqrt{x}+8=0\)\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=16\end{cases}\left(tm\right)}}\)
Vậy \(x\in\text{{}4;16\)
Bài 1 :
a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)
\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)
\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)
\(A=\sqrt{7}-\sqrt{28}\)
\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)
Vậy \(A=-\sqrt{7}\)
b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)
\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)
\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)
\(B=a-b\)
Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)
_Minh ngụy_
Bài 2 :
a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)
Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))
Vậy \(x>1\)thì \(B>0\)
_Minh ngụy_
ta có
\(A=\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{\sqrt{x^3}-x}{\sqrt{x}-1}=\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-x}{x-1-x}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=2\sqrt{x-1}+x\)