Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) x - 6\(\sqrt{x}\)+ 9 = \(\left(\sqrt{x}\right)^2\)- 2.\(\sqrt{x}\).3 + 9 = \(\left(\sqrt{x}-3\right)^2\)
d) Tương tự.
a,b) Không hiểu
\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
\(c,x-6\sqrt{x}+9=\left(\sqrt{x}-3\right)^2\)
\(d,x-4\sqrt{x}+4=\left(\sqrt{x}-2\right)^2\)
a) \(\sqrt{\frac{3a}{4}}.\sqrt{\frac{4a}{27}}=\frac{\sqrt{3a}}{2}.\frac{\sqrt{4a}}{3\sqrt{3}}=\frac{\sqrt{3}.\sqrt{a}.2.\sqrt{a}}{6\sqrt{3}}=\frac{a.2\sqrt{3}}{6\sqrt{3}}=\frac{a}{3}\)
b) \(\sqrt{15x}.\sqrt{\frac{60}{x}}=\sqrt{15x}.\frac{2\sqrt{15}}{\sqrt{x}}=\frac{30\sqrt{x}}{\sqrt{x}}=30\)
a) \(\sqrt{\frac{3a}{4}}.\sqrt{\frac{4a}{27}}=\sqrt{\frac{3a}{4}.\frac{4a}{27}}=\sqrt{\frac{1}{9}.a^2}=\sqrt{\frac{1}{9}}.\sqrt{a^2}=\frac{1}{3}.a\)( Vì \(a\ge0\)nên \(\sqrt{a^2}=\left|a\right|=a\))
b) \(\sqrt{15x}.\sqrt{\frac{60}{x}}=\sqrt{15x.\frac{60}{x}}=\sqrt{900}=30\)
\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
ĐK : \(\hept{\begin{cases}x,y>0\\x\ne y\end{cases}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\frac{x+2\sqrt{xy}+y}{x-y}-\frac{x-2\sqrt{xy}+y}{x-y}\)
\(=\frac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}=\frac{4\sqrt{xy}}{x-y}\)
Với \(\hept{\begin{cases}x=7+2\sqrt{3}\\y=7-2\sqrt{3}\end{cases}}\)( tmđk )
=> \(A=\frac{4\sqrt{\left(7+2\sqrt{3}\right)\left(7-2\sqrt{3}\right)}}{7+2\sqrt{3}-\left(7-2\sqrt{3}\right)}\)
\(=\frac{4\sqrt{7^2-\left(2\sqrt{3}\right)^2}}{7+2\sqrt{3}-7+2\sqrt{3}}\)
\(=\frac{4\sqrt{49-12}}{4\sqrt{3}}\)
\(=\frac{4\sqrt{37}}{4\sqrt{3}}=\frac{\sqrt{37}}{\sqrt{3}}=\frac{\sqrt{37}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{\sqrt{111}}{3}\)
a) Ta có: \(A=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{\sqrt{2x}-x-1}{\sqrt{x}-1}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1-2\sqrt{x}+x}{1-\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}.\frac{\left(1-\sqrt{x}\right)^2}{1-\sqrt{x}}\)
\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)
\(=1^2-\left(\sqrt{x}\right)^2=1-x\).
Vậy \(A=1-x\).
b) Ta có: \(A=1-x\)
Để \(A>0\)\(\Rightarrow1-x>0\Rightarrow1-0>x\Rightarrow1>x\Rightarrow x< 1.\)
Vậy để A > 0 thì x < 1.
Chúc bn hc tốt!
#)Giải :
a) Câu trc của bn mk có giải rùi, thắc mắc vô Thống kê hđ của mk xem lại nhé !
b) Để \(P>0\Rightarrow\frac{x-1}{\sqrt{x}}>0\Rightarrow x-1>0\left(\sqrt{x}>0\right)\Rightarrow x>1\)
c) Bó tay @@
\(a,P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(x-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-1}{\sqrt{x}}\)
Vậy với \(x>0;x\ne1\)thì \(P=\frac{x-1}{\sqrt{x}}\)
\(b,\)Để \(P>0\Leftrightarrow\frac{x-1}{\sqrt{x}}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\left(\sqrt{x}>0\right)\)
a/
ĐK \(x^2-6x+6\ge0\)
\(\text{pt }\Leftrightarrow\left(x^2-6x+6\right)-4\sqrt{x^2-6x+6}+3=0\)
Đặt \(t=\sqrt{x^2-6x+6};t\ge0\)
pt thành \(t^2-4t+3=0\Leftrightarrow t=3\text{ hoặc }t=1\)
\(+t=1\Rightarrow x^2-6x+6=1^2\Leftrightarrow x^2-6x+7=0\Leftrightarrow t=3+\sqrt{2}\text{ hoặc }t=3-\sqrt{2}\)
\(+t=3\Rightarrow x^2-6x+6=3^2\Leftrightarrow x^2-6x-3=0\Leftrightarrow x=3+2\sqrt{3}\text{ hoặc }x=3-2\sqrt{3}\)
Vậy ....
b/
ĐK: \(x^2+3x\ge0\)
\(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\Leftrightarrow-\left(x^2+3x\right)-3\sqrt{x^2+3x}+10=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3x}-2\right)\left(\sqrt{x^2+3x}+5\right)=0\)
\(\Leftrightarrow\sqrt{x^2+3x}=2\text{ hoặc }\sqrt{x^2+3x}=-5\text{ (loại)}\)
\(\Leftrightarrow x^2+3x-2^2=0\Leftrightarrow x=1\text{ hoặc }x=-4\)
Vậy ....
\(x-7=\left(\sqrt{x}\right)^2-\left(\sqrt{7}\right)^2=\left(\sqrt{x}-\sqrt{7}\right)\left(\sqrt{x}+\sqrt{7}\right)\)( \(x\ge0\))
\(x-6\sqrt{x}+9=\left(\sqrt{x}\right)^2-2.3.\sqrt{x}+3^2=\left(\sqrt{x}-3\right)^2\)( \(x\ge0\))
Em mới lớp 8 nên không dám chắc ạ :(