Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 9.
a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)
b) Áp dụng BĐT Cauchy cho 2 số không âm:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
Câu 10.
a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
a hoặc b hoặc c là 1
còn lại là 0
vì a ngũ 2 + b ngũ 2 + c ngũ 2 = a ngũ 3 + b ngũ + c ngũ 3=1 mà 1= 1+0+0 nên ta có như kia(không thể là số thập phân vì số thập phân khi ngũ khác nhau thì tổng khác nhau mà cái này tổng bằng nhau)
- 0 ngũ bao nhiêu cx bằng 0 , 1 ngũ bao nhiêu cx bằng 1
mà a hay hay c bằng 1 hoặc ko đều ko quan trọng chỉ cần bt 1 số là 1 còn 2 số còn lại là 0
nên tổng a ngũ 2 + b ngũ 9+ c ngũ 2019 = bằng 1(0 ngũ bao nhiêu cx bằng 0 , 1 ngũ bao nhiêu cx bằng 1)
chúc học tốt
Cách trình bày như nào ạ? tớ thấy nếu thử như vậy không hợp lí lắm, cậu có cách khác không ạ!?
giúp tớ với!
Tham khảo lời giải tại đây:
Câu hỏi của Nguyen ANhh - Toán lớp 8 | Học trực tuyến
nhầm làm lại nha ^^
(a+b+c)^2=a^2+b^2+c^2
=>a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
=>2(ab+bc+ac)=0
=>ab+bc+ac=0
=>(ab+bc+ac)/abc=0
=>ab/abc+bc/abc+ac/abc=0
=>1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3/ab(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3+3/ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3-3/abc=0
=> 1/a^3+1/b^3+1/c^3=3/abc (đpcm)
(a+b+c)^2=a^2+b^2+c^2
a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
2(ab+bc+ac)=0
ab+bc+ac=0
(ab+bc+ac)/abc=0
ab/abc+bc/abc+ac/abc=0
1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3.(1/a.)(1/b).(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3.3ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3=3/abc
Lời giải:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)
\(\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)
Vì $a+b+c\neq 0$ nên $a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:
$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$
$\Leftrightarrow a=b=c$
Do đó:
\(P=\left(2019+\frac{a}{b}\right)\left(2019+\frac{b}{c}\right)\left(2019+\frac{c}{a}\right)\)
\(=(2019+1)(2019+1)(2019+1)=2010^3\)
Lời giải:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)
\(\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)
Vì $a+b+c\neq 0$ nên $a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:
$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$
$\Leftrightarrow a=b=c$
Do đó:
\(P=\left(2019+\frac{a}{b}\right)\left(2019+\frac{b}{c}\right)\left(2019+\frac{c}{a}\right)\)
\(=(2019+1)(2019+1)(2019+1)=2010^3\)