Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số tiền lãi của 3 công ti lần lượt là x;y;z tỉ lệ thuận với 3;5;7 và x+y+z=225
theo tc của dãy tỉ số bằng nhau ta có x/3=y/5=z/7 =(x+y+z)/(3+5+7)=225/15=15
x=15x3=45
y=15x5=75
z=15x7=105
Lời giải:
Gọi số tiền lãi 3 người nhận được sau 1 tháng lần lượt là $a,b,c$
Vì tiền lãi tỉ lệ thuận với tiền vốn nên tiền lãi tỉ lệ với $2,3,5$
Hay $\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
Theo bài ra ta cũng có: $a+b+c=36$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{36}{12}=3$
$\Rightarrow a=3.2=6; b=3.3=9; c=3.5=15$ (triệu đồng)
Gọi số lãi theo thứ tự là \(a,b,c(a,b,c\in \mathbb{N^*};\text{triệu})\)
Áp dụng tc dtsbn:
\(\dfrac{a}{30}=\dfrac{b}{50}=\dfrac{c}{60}=\dfrac{a+b+c}{30+50+60}=\dfrac{280}{140}=2\\ \Rightarrow\left\{{}\begin{matrix}a=60\\b=100\\c=120\end{matrix}\right.\)
Vậy ...
gọi số tiền lãi của 3 công ti lần lượt là a,b,c( a,b,c >0)
theo bài ta có ba đơn vị kinh doanh góp vốn theo tỉ lệ 2 : 4 : 6
=> a/2=b/4=c/6
lại có tổng tiền lãi là 450 triệu đồng
=> a+b+c=450
áp dụng t/c dãy tỉ số = nhau
=> a/2=b/4=c/4 = a+b+c/2+4+6= 450/12=37,5
=> a= 75
b= 150
c= 225
Gọi số tiền lãi sau một năm tỉ lệ thuận với 3;5;7 là x;y;z.
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và \(x+y+z=225\)( triệu )
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{z+y+z}{3+5+7}=\frac{225}{15}=15\)
\(\hept{\begin{cases}\frac{x}{3}=15\Rightarrow x=15.3=45\\\frac{y}{5}=15\Rightarrow y=15.5=75\\\frac{z}{7}=15\Rightarrow z=15.7=105\end{cases}}\)
Vậy tiền lãi của 3 đơn vị kinh doanh sau 1 năm lần lượt là: 45;75;105 ( triệu )
Tổng số phần bằng nhau là:
3 + 5 + 7 = 15 ( phần )
Đơn vị 1 được lãnh:
225 000 000 : 15 x 3 = 45 000 000đ
Đon vị 2 được lãnh:
225 000 000 : 15 x 5 = 75 000 000đ
Đơn vị 3 được lãnh:
225 000 000 : 15 x 7 = 105 000 000đ
Mình chỉ biết làm theo cách tiểu học thôi
Gọi số lãi Hiệp là a, Sơn là b (a,b>0;triệu đồng)
Áp dụng tc dtsbn:
\(\dfrac{a}{30}=\dfrac{b}{50}=\dfrac{a+b}{30+50}=\dfrac{16}{80}=\dfrac{1}{5}\\ \Rightarrow\left\{{}\begin{matrix}a=6\\b=10\end{matrix}\right.\)
Vậy ...