K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

18 tháng 12 2018

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

8 tháng 7 2019

1.

a)\(\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)

b)\(9a^2+3ab+\frac{1}{4}a^2\)

2.

a)\(\left(5x+2b\right)^2\)

b)\(\left(x+1\right)^2\)

c)\(\left(3x+1\right)^2\)

d)\(\left[\left(2x+3y\right)+1\right]^2\)

16 tháng 7 2019

Bài 1:

a) \(\frac{4}{9}x^2-y^2=\left(\frac{2}{3}x-y\right)\left(\frac{2}{3}x+y\right)\)

b) \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

c) \(4x^2+6x+9=\left(2x+2\right)^2+5\)ko hiểu ???

d) \(\frac{1}{9}x^2-\frac{4}{3}xy+4=\left(\frac{1}{3}x\right)^2-2.\frac{1}{3}x.2+2^2=\left(\frac{1}{3}x-2\right)^2\)

16 tháng 7 2019

Bài 2:

a) \(\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right)=\frac{1}{4}x^2-\frac{1}{9}y^2\)

b) \(\left(2x-\frac{1}{3}y\right)\left(4x^2+\frac{2}{3}xy+\frac{1}{9}x^2\right)=8x^3-\frac{1}{27}y^3\)

c) \(\left(3x-5y\right)\left(9x^2+15xy+\frac{1}{9}x^2\right)=27x^3-125y^3\)

Bài 1 : Cho a + b = 1 Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 Tính giá trị biểu thức A = x2018 + y 2019 Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H ....
Đọc tiếp

Bài 1 : Cho a + b = 1 

Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)

Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 

Tính giá trị biểu thức A = x2018 + y 2019 

Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020

Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H . Đường thẳng kẻ qua D song song với AB cắt BC,AC lần ,lượt tại M,N.

a ) Tứ giác ABMD là hình gì ? Vì sao ?

b ) Chứng minh M là trực tâm tam giác ACD .

c )Gọi I là trung điiểm MC . Chứng minh :  góc HNI = 90 độ 

Bài 5 : Cho biểu thức : 

\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\left(ĐKXĐ:x\ne0,x\ne-5\right)\)

a ) Rút gọn biểu thức trên 

b ) Tìm giá trị của x để giá trị của biểu thức =1

0