K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

a)1 + 2 + 3 + ... + n = 190

   (n + 1)n : 2 = 190

   (n + 1)n      = 190 . 2 = 380

    (n + 1)n    = 20 . 19

=> n = 19

b) (n+1).n:2=2004

    (n+1).n   =2004 . 2 = 4008

    Ko có tích 2 số tự nhiên liên tiếp nào có tận cùng bằng 8 nên n = rỗng

17 tháng 1 2019

\(1+2+3+...+n=190\)

\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=190\)

\(\Leftrightarrow n\left(n+1\right)=380\)

\(\Leftrightarrow n\left(n+1\right)=19\cdot20\)

\(\Leftrightarrow n=19\)hay có 19 số hạng

17 tháng 1 2019

giả sử tồn tại số tự nhiên n thỏa mãn:\(1+2+3+....+n=2004\).Khi đó:

\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=2004\)

\(\Leftrightarrow n\left(n+1\right)=4008\)

Mak \(62\cdot63< 4008< 63\cdot64\)

\(\Rightarrow\)điều giả sử sai

\(\Rightarrow\)điều ngược lại đúng hay không có số tự nhiên n thỏa mãn

17 tháng 8 2018

Bài 1:

- Gọi 6 số từ nhiên liên tiếp là a ; a+ 1; a+2 ; a+3 ; a+4 ; a+5 (a : tự nhiên)

Tổng của chúng là:

a+ (a+1) + (a+2) +(a+3)+(a+4)+(a+5)

= 6a+15

Ta có: 6a chia hết cho 6 với mọi a.

15 không chia hết cho 6.

=> Tổng của chung không chia hết cho 6.

13 tháng 8 2018

Làm từng phần thôi dài quá

Bài 1 :

Gọi số tự nhiên đầu tiên tiên là a

=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5

= 6a + 15

mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết

13 tháng 8 2018

Bài 2 :

Ta thấy : 3^2018 có tận cùng là 1 số lẻ

11^2017 cũng có tận cùng là một số lẻ

=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2

13 tháng 9 2018

1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15\)

\(=6.a+12+3\)

\(=6.\left(x+2\right)+3\)

Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3

Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6

2) Ta có 3 là số lẻ nên 32018 là số lẻ

11 là số lẻ nên 112017 là số lẻ 

Do đó 32018-112017là số chẵn nên chia hết cho 2

3)\(n+4⋮n\)

có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)

\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

4)\(3n+7⋮n\)

có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)

\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)

16 tháng 8 2018

bài 1 ko

bài 2

ta có \(\hept{\begin{cases}3^{2018}=3^{2016}.3^2=\left(3^4\right)^{504}.9=81^{504}.9=\cdot\cdot\cdot1.9=\cdot\cdot\cdot9\\11^{2017}=\cdot\cdot\cdot1\end{cases}}\)

\(\Rightarrow3^{2018}-11^{2017}=\cdot\cdot\cdot9-\cdot\cdot\cdot1=\cdot\cdot\cdot8⋮2\left(ĐPCM\right)\)

bài 3

a) 

\(n+4⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(\text{4}\right)\)

\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)

b)

\(3n+7⋮n\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\)

\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)

26 tháng 9 2018

Đặt \(A=1+2+2^2+2^3+...+2^{20}\)

\(2A=2+2^2+2^3+2^4+...+2^{21}\)

\(2A-A=\left(2+2^2+2^3+...+2^{21}\right)-\left(1+2+2^2+...+2^{20}\right)\)

\(A=2^{21}-1\)

26 tháng 9 2018

Ta đặt 

A= 1+2^1+2^2+2^3+....2^20

2A= 21+22+23+....+221

=>2A-A=(2^1+2^2+2^3+...+2^21)-(1+2^2+2^3+...)

1A=2^21-1

Vậy A=2^21-1

30 tháng 4 2019

Mọi người ơi trả lới giùm mk với

30 tháng 4 2019

0 bik làm

a) A=550-548+542-540+...+56-54+52-1

    52A=552-550+548-546+....+54-52

     52A+A=(552-550+.....+54-52)+(550-548+...+52-1)

    26A=552+1

      A= \(\frac{5^{52}+1}{26}\)

14 tháng 11 2019

cảm ơn bạn nhé bằng 26 phải ko nhớ kb nhé