K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

ĐKXĐ: \(x\ge1\)

\(x^3-x^2-12x\sqrt{x-1}+20=0\)

\(\Leftrightarrow x^2\left(x-1\right)-12x\sqrt{x-1}+20=0\)

Đặt \(\sqrt{x-1}=t\)\(\left(t\ge0\right)\)

=> pt <=> \(x^2t^2-12xt+20=0\)

Với t=0 => 20=0 ( vô lý )

Với \(t\ne0\)ta có:

\(\Delta'=b'^2-ac=36t^2-20t^2=16t^2>0\)

=> phương trình có 2 nghiệm phân biệt

\(\orbr{\begin{cases}x_1=\frac{\sqrt{\Delta'}-b'}{a}\\x_2=\frac{-\sqrt{\Delta'}-b'}{a}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x_1=\frac{4t+6t}{t^2}\\x_2=\frac{-4t+6t}{t^2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x_1=\frac{10}{t}\\x_2=\frac{2}{t}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{\sqrt{x-1}}\\x=\frac{2}{\sqrt{x-1}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{x-1}=10\\x\sqrt{x-1}=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2\left(x-1\right)=100\\x^2\left(x-1\right)=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^3-x^2-100=0\\x^3-x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\left(\text{th}ỏa\text{m}ãn\right)\)

Vậy:....

P/S: Sai thì thôi nhé

8 tháng 10 2020

a) ĐK: \(x>2009;y>2010;z>2011\)

\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)

Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)

8 tháng 10 2020

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)

\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)

(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)

Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)

Vậy phương trình có một nghiệm duy nhất là 3

13 tháng 12 2015

Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge1\right)\)
\(\Rightarrow x^2-2x=\frac{t^2-7}{6}\)
pt trên tương đương với \(\frac{7-t^2}{6}+t=0\)
\(\Leftrightarrow t^2-7-6t=0\)
\(\Leftrightarrow\int^{t=-1}_{t=7}\)
\(\Leftrightarrow t=7\)(vì \(t\ge1\))
thay vào rồi bình phương lên tìm x

5 tháng 10 2020

a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)

ĐK : x ≥ 0

<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)

<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)

<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)

<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)

<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)

<=> \(\sqrt{x}\times\frac{2}{3}=5\)

<=> \(\sqrt{x}=\frac{15}{2}\)

<=> \(x=\frac{225}{4}\)( tm )

15 tháng 10 2020

\(\sqrt{x^2-1}-x^2+1=0\left(đk:x\ne0\right)\)

\(< =>\sqrt{x^2-1}-\left(x^2-1\right)=0\)

Đặt \(x^2-1=a\left(a\ge0\right)\)khi đó : 

\(\sqrt{a}-a=0< =>\sqrt{a}\left(1-\sqrt{a}\right)=0\)

\(< =>\orbr{\begin{cases}\sqrt{a}=0\\\sqrt{a}=1\end{cases}\left(tmđk\right)}\)

Với \(\sqrt{a}=0< =>\sqrt{x^2-1}=0< =>\orbr{\begin{cases}x=1\\x=-1\end{cases}}\left(tmđk\right)\)

Với \(\sqrt{a}=1< =>\sqrt{x^2-1}=1< =>x^2-1=1< =>x=\sqrt{2}\left(tmđk\right)\)

Vậy \(S=\left\{-1;\sqrt{2};1\right\}\)

15 tháng 10 2020

\(\sqrt{x^2-1}-x^2+1=0\)

<=> \(\sqrt{x^2-1}=x^2-1\)

ĐK : \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)

Đặt t = x2 - 1

pt <=> \(\sqrt{t}=t\)( t ≥ 0 )

Bình phương hai vế

<=> t = t2

<=> t2 - t = 0

<=> t( t - 1 ) = 0

<=> \(\orbr{\begin{cases}t=0\\t=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm\sqrt{2}\end{cases}\left(tm\right)}\)

Vậy S = { ±1 ; ±√2 }

5 tháng 4 2019

 \(ĐK:x\ge1\)

Pt (1)  <=> \(y^2-y\sqrt{x-1}-y+\sqrt{x-1}=0\)

<=> \(\left(y^2-y\right)-\left(y\sqrt{x-1}-\sqrt{x-1}=0\right)\)

<=> \(y\left(y-1\right)-\sqrt{x-1}\left(y-1\right)=0\)

<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\Leftrightarrow\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)

+) Với y-1=0 <=> y=1

Thế vào phương trình thứ (2) ta có: \(x^2+1-\sqrt{7x^2-3}=0\Leftrightarrow7x^2+7-7\sqrt{7x^2-3}=0\)

Đặt \(\sqrt{7x^2-3}=t\left(t\ge0\right)\)

Ta có phương trình ẩn t:

\(t^2-7t+10=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=5\end{cases}}\)

Với t =2 ta có: \(\sqrt{7x^2-3}=2\Leftrightarrow7x^2-3=4\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(l\right)\end{cases}}\)

Với t=5 ta có: \(\sqrt{7x^2-3}=5\Leftrightarrow7x^2-3=25\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(l\right)\end{cases}}\)

Vậy hệ có 2nghiem (x,y) là (2,1) và (1, 1)

+) Với \(y-\sqrt{x-1}=0\Leftrightarrow y=\sqrt{x-1}\)

Thế vào phương trình (2) ta có:

\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\Leftrightarrow\left(\sqrt{x-1}-1\right)+\left(x^2+1-\sqrt{7x^2-3}\right)=0\)

<=> \(\frac{\left(x-1\right)-1}{\sqrt{x-1}+1}+\frac{x^4+2x^2+1-7x^2+3}{x^2+1+\sqrt{7x^2-3}}=0\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x^4-5x^2+4}{x^2+1+\sqrt{7x^2-3}}=0\)

<=> \(\frac{x-2}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x^2-4\right)}{x^2+1+\sqrt{7x^2-3}}=0\)

<=> \(\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}\right)=0\)

vì \(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}>0\)với mọi lớn hơn hoặc bằng 1

phương trình trên <=> x-2=0<=> x=2 thỏa mãn đk

Với x=2 ta có: \(y=\sqrt{2-1}=1\)

Hệ có 1nghiem (2,1)

Kết luận:... (2, 1), (1,1)

6 tháng 4 2019

Em cảm ơn chị Nguyễn Linh Chi nhiều ạ!

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

29 tháng 5 2020

đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{cases}\left(a,b\ge0\right)}\)

\(\Rightarrow\hept{\begin{cases}x^2-x+1=b^2\\\sqrt{x^3+1}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=ab\end{cases}}\)

PT tương đương với : 

\(x^2-x+1+2\sqrt{\left(x+1\right)\left(x^2-x+1\right)}-1=2\sqrt{x+1}\)

\(\Leftrightarrow b^2+2ab-1=2a\Leftrightarrow b^2+2ab+a^2=a^2+2a+1\)

\(\Leftrightarrow\left(a+b\right)^2=\left(a+1\right)^2\Leftrightarrow\orbr{\begin{cases}a+b=a+1\\a+b=-\left(a+1\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}b=1\\loai\left(VT\ge0;VP< 0\right)\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-x+1}=1\Leftrightarrow x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}\left(tm\right)}\)

Vậy ...