Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{2n+5}{n+3}\)là số tự nhiên thì :\(2n+5⋮n+3\)
\(\hept{\begin{cases}2n+5⋮n+3\\n+3⋮n+3\end{cases}}\)\(=>\hept{\begin{cases}2n+5⋮n+3\\2n+6⋮n+3\end{cases}=>2n+6-2n-5⋮n+3}\)
(=) 1\(⋮\)n+3
=> n+3\(\in\)Ư(1)
=> n ko tồn tại
\(Tadellco::\left(\right)\left(\right)\)
\(\frac{2n+5}{n+3}\in Z\Rightarrow2n+5⋮n+3\Rightarrow2\left(n+3\right)-\left(2n+5\right)=1⋮n+3\Rightarrow n+3\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
b, \(Tadellco\left(to\right)\left(rim\right)\)
\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\Rightarrow...........\)
2+(-3)+4+(-5)+.....+2008+(-2009)+2010+(-2011)+2012
=2-3+4-5+....+2008-2009+2010-2011+201s
=(2-3)+(4-5)+....+(2008-2009)+(2010-2011)+2012
=-1 + -1 +.....+ -1 +-1 + 2012 ( có 1005 số 1)
= -1 * 1005 + 2012
= -1005 + 2012
=1007
_____________________Giải_____________________
\(\hept{\begin{cases}a+2b⋮3\\3a+3b⋮3\end{cases}}\Rightarrow3a+3b-a-2b⋮3\Rightarrow2a+b⋮3\)
2. _____________________Giải________________________
\(\hept{\begin{cases}a-b⋮7\\7a+7b⋮7\end{cases}}\Rightarrow7a+a+7b-b⋮7\Rightarrow8a+6b⋮7\)
=> 2(4a+3b) chia hết cho 7 vì (2;7)=1
=> 4a+3b chia hết cho 7 (đpcm)
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...
Ta có :A = 3 + 32 + 33 + 34 + 35 + ... + 3100
3A = 3(3 + 32 + 33 + 34 + ... + 3100)
3A = 32 + 33 + 34 + 35 + ... + 3101
3A - A = (32 + 33 + 34 + 35 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A = 3101 - 3
Ta lại có : 2A + 3 = 3n
hay 3101 - 3 + 3 = 3n
=> 3101 = 3n
=> n = 101
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Thay 2A vào biểu thức ta có :
\(3^{101}-3+3=3^n\)
\(3^{101}=3^n\)
\(\Rightarrow n=101\)
Vậy n = 101