Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình : tự vẽ
xét \(\Delta ABC\)cân tại A
=> AB=AC ( t/c tam giác cân)
=>\(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)( t/c tam giác cân) (1)
xét \(\Delta AEC\)và \(\Delta AFB\)
\(\widehat{A}\)-chung
AB=AC ( cmt)
\(\widehat{ABC}=\widehat{ACB}\)
=> \(\Delta AEC\)=\(\Delta AFB\)(g.c.g)
=AE=AF ( 2 c t ứ)
Xét \(\Delta AEF\): AE=AF (cmt)
=>\(\Delta AEF\)cân tại A ( đ/nghĩa)
=>\(\widehat{AEF}=\widehat{AFE}=\frac{180^o-\widehat{A}}{2}\)(t/c tam giác cân ) (2)
Từ (1) và (2)
=>\(\widehat{AEF}=\widehat{ABC}\)
mà 2 góc này lại ở vị trí đồng vị của EF và BC
=> EF//BC
b) Ta có : AB= AC ( cmt)
AE = AF
=> AB-AE=AC-AF
=>BE=FC
rồi cm nốt ik mik lười quá T_T
a, xét 2 tam giác vuông AEC và AED có:
AC=AD(gt)
AE cạnh chung
=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)
=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)
b, xét t.giác AIC và t.giác AID có:
AI cạnh chung
\(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)
AC=AD(gt)
=> t.giác AIC=t.giác AID(c.g.c)
=> IC=ID=> I là trung điểm của CD(1)
\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)
từ (1) và (2) suy ra AE là trung trực của CD
A B C D E I
Câu 1 :
Ta có: Có DH _l_ EF (gt)
=> H là hình chiếu của D
mà DE < DF (gt)
=> HE < HF (quan hệ đường xiên hình chiếu)
2. Vì HE < HF (từ 1)
=> ME < MF (quan hệ đx, hình chiếu)
3. Xét ΔDHEΔDHE và ΔDHFΔDHF có:
DH: chung
H1ˆ=H2ˆ=90o(gt)H1^=H2^=90o(gt)
nhưng HE < HF (từ 1)
=> HDEˆ<HDFˆHDE^<HDF^ (vì HDEˆHDE^ đối diện với HE; HDFˆHDF^ đối diện với HF)
cho mk hỏi bn có viết sai đề bài ko
mk ko thấy điểm M và F nào cả