K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

1) Bài này có 2 cách giải

Cách 1:

để ý rằng \(\hept{\begin{cases}1-x^2=\left(1-x\right)\left(1+x\right)=\left(y+z\right)\left(2x+y+z\right)\\x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\end{cases}}\)

ta có: \(\frac{1-x^2}{x+yz}=\frac{a\left(b+c\right)}{bc}=\frac{a}{b}+\frac{a}{c}\)

trong đó: \(a=y+z;b=z+x;c=x+y\). Tương tự, ta cũng có:

\(\hept{\begin{cases}\frac{1-y^2}{y+zx}=\frac{b}{c}+\frac{b}{a}\\\frac{1-z^2}{z+xy}=\frac{c}{a}+\frac{c}{b}\end{cases}}\)

Do đó sử dụng BĐT AM-GM ta có:

\(VT_{\left(1\right)}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)

Dấu "=" xảy ra khi a=b=c và x=y=z=\(\frac{1}{3}\)

Cách 2:

Sử dụng BĐT AM-GM  dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x+yz\le x+\frac{\left(y+z\right)^2}{4}=x+\frac{\left(1-x\right)^2}{4}=\frac{\left(1+x\right)^2}{4}\)

Do đó: \(\frac{1-x^2}{x+yz}\ge\frac{4\left(1-x^2\right)}{\left(1+x\right)^2}=\frac{4\left(1-x\right)}{1+x}=4\left(\frac{2}{1+x}-1\right)\)

tương tự có:\(\hept{\begin{cases}\frac{1-y^2}{x+yz}\ge4\left(\frac{2}{1+y}-1\right)\\\frac{1-z^2}{z+xy}\ge4\left(\frac{2}{1+z}-1\right)\end{cases}}\)

Cộng các đánh giá trên và sử dụng BĐT Cauchy-Schwarz dạng cộng mẫu, ta được

\(VT_{\left(1\right)}\ge8\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)-12\)

               \(\ge8\cdot\frac{9}{3+x+y+z}+12=6\)

8 tháng 6 2017

\(G=x.\left(x+1\right)^2+x\left(x-5\right)-5\left(x+1\right)^2\)

\(G=\left(x+1\right)^2.\left(x-5\right)+x\left(x-5\right)\)

\(G=\left(x-5\right).\left[\left(x+1\right)^2+x\right]\)

\(G=\left(x-5\right).\left(x^2+2x+1+x\right)\)

\(G=\left(x-5\right).\left(x^2+3x+1\right)\)

Chúc bạn học tốt!!!

4 tháng 9 2019

a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)

b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-1\right)\left(n-2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)

 
4 tháng 9 2019

a,25^n.24

mà 25^n :5

29 tháng 12 2019

Áp dụng bđt AM-GM ta có: 

\(\sqrt[3]{\left(5x+3y\right).8.8}\le\frac{5x+3y+8+8}{3}\)

\(\sqrt[3]{\left(5y+3z\right).8.8}\le\frac{5y+3z+8+8}{3}\)

\(\sqrt[3]{\left(5z+3x\right).8.8}\le\frac{5z+3x+8+8}{3}\)

Cộng từng vế các đẳng thức trên ta được:

\(4N\le\frac{8\left(x+y+z\right)+48}{3}=24\)

\(\Rightarrow N\le6\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)

29 tháng 12 2019

 x, y, z \(\ge\)0 là đúng đấy

và bạn có thể giải bằng BĐT Cauchy đc ko

8 tháng 10 2018

\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=54.55^n=>chiahetcho54\)

\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

k mk nha

cảm ơn

3 tháng 11 2018

xy - x +5y - 7 = 0

⇔(xy−x)+(5y−5)=2⇔(xy−x)+(5y−5)=2

⇔x(y−1)+5(y−1)=2⇔x(y−1)+5(y−1)=2

⇔(y−1)(x+5)=2⇔(y−1)(x+5)=2

Có 4 TH xảy ra:

TH1: x + 5 = 2, y - 1 = 1 x = -3, y = 2
TH2: x + 5 = 1, y - 1 = 2 x = - 4, y = 3
TH3: x + 5 = -2, y - 1 = -1 x = -7, y = 0
TH4: x + 5 = -1, y - 1 = -2 x = -6, y = -1.

Vậy ...

3 tháng 11 2018

à mk nhầm tí x*y-x+5*y-7 nhk các bn

18 tháng 10 2020

Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)

=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0

=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)

=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca

=> a2 + b2 + c2 \(\le\)2(ab + bc + ca) 

Dấu "=" xảy ra <=> a + b + c = 0

18 tháng 10 2020

Xí bài 2 ý a) trước :>

4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0

<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0

<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0

Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thế vào T ta được : 

\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)

\(T=0+1+1=2\)