K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Ta có : x+ y2 + z2 - yz  - 4x - 3y + 7

= [x- 4x + 4]+[\(\frac{1}{4}\)* y2 - yz + z2 ] + [ \(\frac{3}{4}\cdot(y^2-4y+4)]\)

= (x-2)^2 + (y/2 - z)^2 + 3/4.(y-2)^2 >= 0 

=> đpcm

Chúc bạn học tốt

23 tháng 8 2019

\(6\le\sqrt{3\left(x^2+y^2+z^2\right)}+x^2+y^2+z^2\)

Đặt \(\sqrt{x^2+y^2+z^2}>0\) thì:

\(t^2+\sqrt{3}t-6\ge0\)\(\Leftrightarrow t\ge\sqrt{3}\left(\text{do t>0 nên loại th kia }\right)\Rightarrow x^2+y^2+z^2\ge3^{\left(đpcm\right)}\)

Đúng ko ta?

17 tháng 8 2019

Áp dụng bất đẳng thức Cauchy :

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

Cộng theo vế ta được :

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1)

Mặt khác ta cũng có BĐT quen thuộc :

\(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2)

Lấy (1) cộng (2) ta được :

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z\right)+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)

\(\Leftrightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

26 tháng 2 2018

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)

\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)

\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Dấu "=" <=> x=y=z=1

7 tháng 8 2017

=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx

>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)

7 tháng 8 2017

=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx

>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)

2 tháng 2 2019

Áp dụng BĐT AM-GM cho 3 số không âm, ta có: \(0< \sqrt[3]{yz.1}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{3x}{y+z+1}\)

Làm tương tự với 2 hạng tử còn lại rồi cộng theo vế thì có:

\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{x+y+1}\right)\)

\(=3\left(\frac{x^2}{xy+xz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{zx+yz+z}\right)\ge^{Schwartz}3.\frac{\left(x+y+z\right)^2}{x+y+z+2\left(xy+yz+zx\right)}\)

\(=3.\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x+y+z+2\left(xy+yz+zx\right)}\ge9.\frac{xy+yz+zx}{\sqrt{3\left(x^2+y^2+z^2\right)}+2\left(x^2+y^2+z^2\right)}\)

\(=9.\frac{xy+yz+zx}{3+2.3}=xy+yz+zx\) => ĐPCM.

Dấu "=" xảy ra khi x=y=z=1.

26 tháng 2 2019

UvU à nhầm u;v;w chứ @@

\(\left(x+y+z;xy+zx+yz;xyz\right)->\left(3u;3v^2;w^3\right)\)

ta can cm\(w\le\dfrac{u}{\sqrt[3]{2}}\) voi \(9u^2=12v^2\)

notethat: dieu kien da cho ko co \(w\) nen ta co the k,dinh rang co the tim dc gia tri lon nhat cua \(w^3\), xay ra khi 2 bien bang nhau. WLOg x=y

\(gt->z\left(z-4x\right)=0\)

+)z=0 bdt luon dung

+)z=4x ta cco bdt can cm \(5x+y\ge3\sqrt[3]{8x^2y}\)

\(\Leftrightarrow\left(5x+y\right)^3-\left(6\sqrt[3]{x^2y}\right)^3\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(125x^2-16xy-y^2\right)\ge0\)

\(\Leftrightarrow0\ge0\)

True af

26 tháng 2 2019

coi \(x^2+y^2+z^2=2xy+2yz+2xz\) la pt bac 2 an \(z\)

(delta,nhan chia cac thu....)

\(\left[{}\begin{matrix}z=x+y+2\sqrt{xy}\\z=x+y-2\sqrt{xy}\end{matrix}\right.\)

+)\(z=x+y-2\sqrt{xy}\). ta cần cm \(2\left(x+y-\sqrt{xy}\right)\ge3\sqrt[3]{2xy\left(x+y-2\sqrt{xy}\right)}\)

\(\left(\sqrt{x};\sqrt{y}\right)->\left(a;b\right)\) (cho gọn)

\(\left(2\left(a^2+b^2-ab\right)\right)^3-\left(3\sqrt[3]{2a^2b^2\left(a^2+b^2-2ab\right)}\right)^3\ge0\)

\(\Leftrightarrow2\left(a+b\right)^2\left(2a-b\right)^2\left(a-2b\right)^2\ge0\)

+)\(z=x+y+2\sqrt{xy}\) cũng cần cm

\(2\left(x+y+\sqrt{xy}\right)\ge3\sqrt[3]{2xy\left(x+y+2\sqrt{xy}\right)}\)

\(\left(\sqrt{x};\sqrt{y}\right)->\left(a;b\right)\)

\(\left(2\left(a^2+b^2+ab\right)\right)^3-\left(3\sqrt[3]{2a^2b^2\left(a^2+b^2+2ab\right)}\right)^3\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\left(2a+b\right)^2\left(a+2b\right)^2\ge0\)

ta có:

\(F^2=\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\)

\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)=1+2.1=3\)

\(\Rightarrow F\ge\sqrt{3}\)

Vậy \(Min_F=\sqrt{3}\)khi \(x=y=z=\frac{\sqrt{3}}{3}\)

18 tháng 7 2017

cho mình hỏi từ \(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge x^2+y^2+z^2\)tại sao lại ra được như thế này vậy ạ