Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(x+y+z=0\)
\(\Leftrightarrow\left(x+y\right)=-z\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Rightarrow x^2+2xy+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự : \(y^2+z^2-x^2=-2yz\)
\(z^2+x^2-y^2=-2xz\)
Suy ra :
\(P=\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}=\frac{-1}{xyz}\left(x+y+z\right)=\frac{-1}{xyz}.0=0\)
Câu hỏi của Hoàng Liên - Toán lớp 9 - Học toán với OnlineMath
Ta có \(x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2=4\Rightarrow+xy+yz+zx=-7\)
vì \(x+y+z=2\Rightarrow z-1=1-x-y\Rightarrow\frac{1}{xy+z-1}=\frac{1}{xy+1-x-y}=\frac{1}{\left(x-1\right)\left(y-1\right)}. \)
Suy ra \(S=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}. \)
\(\frac{z-1+x-1+y-1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-\frac{1}{7}\)
Vì x^2+y^2+z^2=1 nên 0 <= x^2<=1, 0<=y^2<=1, 0<=z^2<=1 ( <= : nhỏ hơn hoặc bằng nha bn:))
suy ra -1<=x<=1: -1<=y<=1,-1<=z<=1 (*)
Xét x^2+y^2+z^2-(x^3+y^3+x^3)=1
x^2(1-x)+y^2(1-y)+z^2(1-z)=0 (**)
Có x^2 , y^2, z^2>=0 với mọi x,y,z
Lại có x<=1, y<=1, z<=1 nên 1-x>=0, 1-y>=0, 1-z>0 (***)
Từ (**) và (***) suy ra:
x^2(1-x)+y^2(1-y)+z^2(1-z)>=0 với mọi x, y, z
Nên từ (*) suy ra: x^2(1-x)=0
y^2(1-y)=0
z^2(1-z)=0
Suy ra có 3 trường hợp :x=0 hoặc x=1 ; y=0 hoặc y=1, z=0 hoặc z=1
Với x=1 suy ra y=z=0 nên P=0
Với y=1 suy ra x=z=0 nên P=0
Với z=1 suy ra y=x=0 nên P=0
Vậy trong mọi trường hợp P=0
Hình như đề có vấn đề đó bạn
theo mình
Có : x+y+z =1
\(\Rightarrow\)\(x^2+y^2+z^2+2xz+2yz+2xy=1\)
\(\Leftrightarrow\)xy+xz+zy =0
Lại có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=1\left(1-0\right)=1\)
\(x^3+y^3+z^3=1+3=4\)
\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=4\)
\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3}{x^3y^3z^3}=\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3\)
\(=\left(xy+yz+zx\right)\left[\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2-xy^2z-xyz^2-x^2yz\right]+3xy.yz.zx\)
\(=0+3=3\)
Ta có x + y + z = 2
=> (x + y + z)2 = 4
<=> x2 + y2 + z2 + 2(xy + yz + zx) = 4
<=> 2 + 2(xy + yz + zx) = 4
<=> xy + yz + zx = 1
<=> \(\frac{xyz}{x}+\frac{xyz}{y}+\frac{xyz}{z}=1\)
<=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\left(\text{đpcm}\right)\)