Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
\(=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\left(\dfrac{4x}{5}+\dfrac{4y}{5}\right)\)
\(\ge2.6+2+\dfrac{4}{5}.10=22\)
Vậy GTNN là P = 22 khi x = y = 5
Hãy xem phương pháp chọn điểm rơi của BĐT AM-GM( BĐT Cô-si)
Giải
\(P=\frac{3x}{10}+\frac{30}{x}+\frac{y}{20}+\frac{5}{y}+\frac{17x}{10}+\frac{19y}{20}\)
Áp dụng BĐT AM-GM, ta có:
\(\frac{3x}{10}+\frac{30}{x}\ge2\sqrt{\frac{3x}{10}\cdot\frac{30}{x}}=6\)
\(\frac{y}{20}+\frac{5}{y}\ge2\sqrt{\frac{y}{20}\cdot\frac{5}{y}}=1\)
Do đó
\(P\ge6+1+17+\frac{19}{2}=\frac{67}{2}\)(Vì \(x,y\ge10\))
Vậy \(P_{min}=\frac{67}{2}\Leftrightarrow x=y=10\)
1) \(21x^2+21y^2+z^2\)
\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)
\(\ge9\left(x+y\right)^2+z^2+3.2xy\)
\(\ge2.3\left(x+y\right).z+6xy\)
\(=6\left(xy+yz+zx\right)=6.13=78\)
Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6
2) \(x+y+z=3xyz\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3
Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)
Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)
\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)
Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\); \(b=2\sqrt{\frac{3}{5}}\)
khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)
\(1=\left(x+y+z\right)^2\ge4x\left(y+z\right)\Rightarrow x\le\frac{1}{4\left(y+z\right)}\)
Do đó \(A\ge y+z-16yz.\frac{1}{4\left(y+z\right)}+2017\)
\(=y+z-\frac{4yz}{y+z}+2017\ge y+z-\frac{\left(y+z\right)^2}{y+z}+2017=2017\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{4};\frac{1}{4}\right)\)
Is that true?
Bí quá thì làm cách sau đây cũng được:v
Đặt A= f(x;y;z) và \(t=\frac{y+z}{2}>0\). Xét hiệu:
\(f\left(x;y;z\right)-f\left(x;t;t\right)=16x\left(t^2-yz\right)\ge0\)
Do đó \(f\left(x;y;z\right)\ge f\left(x;t;t\right)=f\left(1-2t;t;t\right)\) (do cách chọn t)
Ta sẽ tìm min của \(f\left(1-2t;t;t\right)=2t-16\left(1-2t\right)t^2+2017\)
\(=2t\left(4t-1\right)^2+2017\ge2017\)
Đẳng thức xảy ra khi \(y=z=t=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)
<=> A = (x+y) + ( 5/x + 5/y) +( 25/x + x)
Xét:
+) x+y >/ 10
+) 5/x + 5/y = 5(1/x+1/y) >/ 5.4/x+y = 2 <=> x=y
+) 25/x + x >/ 2. căn 25/x.x =10
=> A >/ 10+2+10 = 22 <=> (x;y)= (5;5).
\(A=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\dfrac{4}{5}\left(x+y\right)\)
\(A\ge2\sqrt{\dfrac{180x}{5x}}+2\sqrt{\dfrac{5y}{5y}}+\dfrac{4}{5}.10=22\)
\(A_{min}=22\) khi \(x=y=5\)