K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

giả sử N là trung điểm AC

mà M là trung điểm AB ( gt )

=> MN là đường trung bình tam giác ABC 

=> MN // BC 

Vậy N là trung điểm AC 

25 tháng 7 2021

A B C M N E

Từ C vẽ đường thẳng song song AB cắt MN tại E

Xét tam giác  BMC và tam giác ECM ta có

MC là cạnh chung

góc BMC = góc MCE ( 2 góc so le trong và AB//CE)

góc BCM = góc CME ( 2 góc so le trong và MN //BC)

=> tam giác BMC = tam giác ECM ( g-c-g)

=> BM= CE

mà AM = BM ( M là trung điểm AB )

nên CE = AM

Xét tam giác ANM và tam giác CNE ta có

AM = CE ( cmt)

góc MAN = góc NCE ( 2 góc so le trong và AB//CE)

góc AMN = góc NEC ( 2 góc so le trong và AB//CE)

=> tam giac ANM = tam giác CNE (g-c-g)

=> AN= NC

=> N là trung điểm AC

3 tháng 2 2022

TK

giả sử N là trung điểm AC

mà M là trung điểm AB ( gt )

=> MN là đường trung bình tam giác ABC 

=> MN // BC 

Vậy N là trung điểm AC

Ghi rõ Tham khảo ra ha!

19 tháng 2 2020

Chuẩn

là sao bạn phương linh

A B C M N

ta có AB = AC 

=> \(\Delta ABC\)cân tại A

Mà BM= MC 

=> AM vuông góc vs BC

b) ta có AB // CN 

=> AC // BN

=> ABNC là hình bình hành 

Mà BC vuông góc vs AN

=> ABNC là hình thoi

=> AC = CN

=>ACN là tam giác cân 

Mà CM vuông vs AN 

=> AM = MN

=> M là trung điểm của AN ( đpcm )

(Tự vẽ hình)

Do BM//NI, MN//BI nên MNIB là hình bình hành

=> BM=IN (2 cạnh đối) (1)

Trong tam giác ABC, do M trung điểm AB, MN//BC => N trung điểm AC (2)

Do MA=MB,NA=NC nên MN là đường trung bình tam giác ABC => MN=1/2 BC (4)

CMTT, ta có I trung điểm BC (3)

Vậy ta có tất cả đpcm

9 tháng 1 2019

A B C M D I K

a) Do AD // BC (gt) => góc DAC = góc ACB (so le trong)

        AB // CD (gt) => góc BAC = góc ACD (so le trong)

Xét t/giác ABC và t/giác CDA

có góc ACB = góc DAC (cmt)

 AC : chung

 góc BAC = góc ACD (cmt)

=> t/giác ABC = t/giác CDA (g.c.g)

b) Ta có : t/giác ABC = t/giác CDA (cmt)

=> AB = CD (hai cạnh tương ứng)

Do AB // CD (gt) => góc ABD = góc BDC (so le trong)

Xét t/giác AMB và t/giác CMD

có góc BAM = góc  MCD (cmt)

  AB = CD (cmt)

  góc ABM = góc BDM (cmt)

=> t/giác AMB = t/giác CMD (g.c.g)

=> AM = MC (hai cạnh tương ứng)

=> M là trung điểm của AC

c) Xét t/giác AMI và t/giác CMK

có góc DAC = góc ACK (cmt)

    AM = CM (cmt)

   góc IMA = góc CMK (đối đỉnh)

=> t/giác AMI = t/giác CMK (g.c.g)

=> MI = MK (hai cạnh tương ứng)

=> M là trung điểm của IK

30 tháng 11 2019

Kuroba Kaito, mình đã biết I, M, K có thẳng hàng đâu. mới chứng minh được MI=Mk nên chưa thể nói M là trung điểm của IK được

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng