Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. AM là phân giác của tam giác ABC cân tại A => AM cũng là đường cao và đường phân giác trong ta giác ABC
=> góc EAM = góc FAM
=> Tam giác EAM = tam giác FAM (cạnh huyền - góc nhọn)
=> EA=FA và EM = FM (1)
TA có: AB =AC => AB - AE = AC - ÀF <=> BE = FC (2)
Và AM là đường trung tuyến của tam giác ABC => BM =MC (3)
Từ (1), (2), (3) => tam giác BEM = tam giác CFM (c-c-c)
A E B F C D M
a, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
MB = MC (gt)
góc B = góc C (gt)
=> t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
b, Xét t/g AEM và t/g AFM có:
EM = FM (t/g BEM = t/g CFM)
góc AEM = góc AFM = 90 độ (gt)
AM chung
=> t/g AEM = t/ AFM (c.g.c)
=> AE = AF
=> tg/ AEF cân tại A
Mà AM là tia phân giác của t/g AEF
=> AM là đường trung trực của t/g AEF hay AM là đường trung trực của EF
c, Vì t.g ABC cân tại A và AM là trung tuyến cuả BC
=> AM cũng là đường trung trực của BC (1)
=> góc AMB = 90 độ
Xét t/g DMB và t/g DMC có:
MB = MC (gt)
góc DMB = góc DMC = 90 độ (cmt)
DM chung
=> t/g DMB = t/g DMC (c.g.c)
=> DB = DC => D thuộc trung trực của BC
Mà MB = MC => M thuộc trung trực của BC
=> DM là trung trực của BC (2)
Từ (1) và (2) => A,D,M thẳng hàng
Hình (tự vẽ)
a) ΔABE cân
Xét hai tam giác vuông ABH và EBH có:
\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)
HB là cạnh chung.
Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)
⇒ BA = BE (2 cạnh tương ứng)
⇒ ΔABE cân tại B.
b) ΔABE đều
Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.
c) AED cân
Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)
Xét hai tam giác vuông ADH và EDH có:
AH = EH (cmt)
HD: cạnh chung
Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)
⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)
⇒ ΔAED cân tại D
d) ΔABF cân
Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong) (1)
Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)
Thay: 60o + ABF = 180o
⇒ ABF = 180o - 60o = 120o
Xét ΔABF, ta có:
\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)
Thay: 120o + BFA + 30o = 180o
⇒ BFA = 180 - 120 - 30 = 30 (2)
Từ (1) và (2) suy ra: ΔABF cân tại B.