Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(TH1:\)\(x=1\Rightarrow y=1\)
\(TH2:\)\(x=-1;y=1\)
\(TH3:\)\(x=1;y=-1\)
\(TH4:\)\(x=-1;y=-1\)
\(TH5:\)\(x=0;y=2\)
\(TH6:\)\(x=0;y=-2\)
\(TH7:\)\(x=2;y=0\)
\(TH8:x=-2;y=0\)
\(TH9:\)\(x=-1;y=3\)
\(....\)
Mình thề là cái đề nó hài thật sự :)) Vô số nghiệm nhé
\(a)\frac{x}{8}=\frac{-30}{y}=\frac{-48}{32}\)
Rút gọn : \(\frac{-48}{32}=\frac{(-48):16}{32:16}=\frac{-3}{2}\)
* Ta có : \(\frac{x}{8}=\frac{-3}{2}\)
\(\Rightarrow x\cdot2=-3\cdot8\)
\(\Rightarrow x=\frac{-3\cdot8}{2}=-12\)
* Ta có : \(\frac{-30}{y}=\frac{-3}{2}\)
\(\Rightarrow-30\cdot2=-3\cdot y\)
\(\Rightarrow y=\frac{-30\cdot2}{-3}=20\)
Mấy bài kia làm tương tự
\(a)\frac{x}{4}=\frac{-15}{y}=\frac{z}{52}=\frac{-32}{64}\)
Rút gọn phân số : \(\frac{-32}{64}=\frac{-32:32}{64:32}=\frac{-1}{2}\)
* Ta có : \(\frac{x}{4}=\frac{-1}{2}\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=(-4):2=-2\)
* Ta có : \(\frac{-15}{y}=\frac{-1}{2}\)
\(\Rightarrow(-1)\cdot y=-30\)
\(\Rightarrow-y=-30\)
\(\Rightarrow y=30\)
* Ta có : \(\frac{z}{52}=\frac{-1}{2}\)
\(\Rightarrow2z=(-1)\cdot52\)
\(\Rightarrow2z=-52\)
\(\Rightarrow z=-26\)
b, Tương tự câu a
a, ta có \(\frac{x}{4}\)= \(\frac{-32}{64}\)=> \(\frac{x}{4}\)= \(\frac{-1}{2}\)=> x = -2
\(\frac{-15}{y}\) = \(\frac{-32}{64}\) => \(\frac{-15}{y}\) = \(\frac{-1}{2}\) => y = 30
\(\frac{z}{52}\) = \(\frac{-32}{64}\) => \(\frac{z}{52}\) = \(\frac{-1}{2}\) => z = -26
vậy x = -2 ; y = 30 ; z = -26
câu b làm tương tự câu a
Ta có : - 2000 < | x | < 2
\(\Rightarrow\)x \(\in\){ 0 ; \(\pm\)1 }
Bài giải
\(x+2=7+y\) \(\Rightarrow\text{ }x-y=7-2=5\)
\(\frac{x}{3}=\frac{6}{y}=\frac{z}{10}\text{ }\Rightarrow\text{ }\frac{x}{3}=\frac{6}{z}=\frac{y}{10}=\frac{x-y}{3-10}=\frac{5}{-7}\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\text{ }x=\frac{5}{-7}\cdot3=\frac{15}{-7}\)
\(y=\frac{5}{-7}\cdot10=\frac{50}{-7}\)
\(z=6\text{ : }\frac{5}{-7}=-\frac{42}{5}\)
\(|x|,|y|,|z|\)luôn \(\ge0\forall x,y,z\)
\(\Rightarrow|x|+|y|+|z|\ge0\)
mà \(|x|+|y|+|z|\le0\left(gt\right)\)
\(\Rightarrow|x|+|y|+|z|=0\)\(\Leftrightarrow x=y=z=0\)
Vậy \(x=y=z=0\)
Với x,y,z \(\in N\)
Chứng tỏ : \((100x+10y+z)⋮21\Leftrightarrow(x-2y+4z)⋮21\)
Giải :
100x + 10y + z chia hết cho 21 nên cũng chia hết cho 3 và 7
Ta có : x - 2y + 4z = \((100x+10y+z)-(99x+12y-3z)\)mà 100x + 10y + z và 99x + 12y - 3z đều chia hết cho 3
nên x - 2y + 4z chia hết cho 3
Có \(2\cdot(x-2y+4z)=(100x+10y+z)-(98x-14y+7z)\)mà 100x + 10y + z và 98x + 14y - 7z đều chia hết cho 7 nên \(2\cdot(x-2y+4z)⋮7\)mà 2 không chia hết cho 7 nên x - 2y + 4z chia hết cho 7
=> x - 2y + 4z chia hết cho 3 và 7 nên sẽ chia hết cho 21
Chúc bạn hok tốt :>
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Lời giải (lớp 7)
Theo t/c tỉ lệ thức: \(\frac{4+x}{7+y}=\frac{4}{7}\Leftrightarrow\frac{4+x}{4}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{4+x}{4}=\frac{7+y}{7}=\frac{7+4+x+y}{4+7}=\frac{22}{11}=2\)
Suy ra \(4+x=2.4=8\Rightarrow x=8-4=4\)
Suy ra \(7+y=2.7=14\Leftrightarrow y=7\)
Lời giải (lớp 6)
Từ đề bài suy ra: \(7\left(4+x\right)=4\left(7+y\right)\) và \(y=11-x\)
\(\Leftrightarrow7\left(4+x\right)=4\left(7+11-x\right)\)
\(\Leftrightarrow28+7x=4\left(18-x\right)\)
\(\Leftrightarrow28+7x=72-4x\)
\(\Leftrightarrow11x=44\Leftrightarrow x=4\)
Thay vào tìm y=)