Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: sin2a+cos2a=1
=> cos a=căn bậc(1-cos2a)
<=> cos a = căn bậc (1-9/5)
mà ta lại có n/2<a<n => cos a thuộc (90*;180*), cos a âm
=> cos a = -4/5
Lớp 9 không biết có học tới sin cos âm chưa nếu chưa thì lấy phần dương nha
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+\left(\frac{2}{3}\right)^2=\frac{1}{cos^2a}\)
\(1+\frac{4}{9}=\frac{1}{cos^2a}\)
\(\frac{13}{9}=\frac{1}{cos^2a}\)
\(cos^2a=\frac{9}{13}\)
\(cosa=\pm\sqrt{\frac{9}{13}}=\pm\frac{3\sqrt{13}}{13}\)
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{9}{13}=1\)
\(sin^2a=\frac{4}{13}\)
\(sina=\pm\sqrt{\frac{4}{13}}=\pm\frac{2\sqrt{13}}{13}\)
tan dương nên sẽ có 2 TH
TH1 sin và cos cùng dương
\(\frac{sin^3a+3cos^3a}{27sin^3a-25cos^3a}\)
\(=\frac{\left(\frac{2\sqrt{13}}{13}\right)^3+3\cdot\left(\frac{3\sqrt{13}}{13}\right)^3}{27\cdot\left(\frac{2\sqrt{13}}{13}\right)^3-25\cdot\left(\frac{3\sqrt{13}}{13}\right)^3}\)
\(=-\frac{89}{459}\)
TH2 sin và cos cùng âm
\(\frac{sin^3a+3cos^3a}{27sin^3a-25cos^3a}\)
\(=\frac{\left(\frac{-2\sqrt{13}}{13}\right)^3+\left(\frac{-3\sqrt{13}}{13}\right)^3}{27\cdot\left(\frac{-2\sqrt{13}}{13}\right)^3-25\cdot\left(\frac{-3\sqrt{13}}{13}\right)^3}\)
\(=-\frac{89}{459}\)
a) \(\dfrac{2sina+3cosa}{3sina-4cosa}=\dfrac{9}{5}\)
b) \(\dfrac{sina.cosa}{sin^2a-sina.cosa+cos^2a}=0\)
\(a.\dfrac{2\sin\alpha+3\cos\alpha}{3\sin\alpha-4\cos\alpha}=\dfrac{2\left(3cos\alpha\right)+3cos\alpha}{3\left(3cos\alpha\right)-4cos\alpha}=\dfrac{9cos\alpha}{5cos\alpha}=\dfrac{9}{5}\)
\(b.\dfrac{sin\alpha cos\alpha}{sin^2\alpha-sin\alpha cos\alpha+cos^2\alpha}=\dfrac{3cos^2\alpha}{9cos^2\alpha-3cos^2\alpha+cos^2\alpha}=\dfrac{3cos^2\alpha}{7cos^2\alpha}=\dfrac{3}{7}\)
Bài làm:
Ta có: \(2\sin^2\alpha+\cot^2\alpha.\sin^2\alpha+\cos^2\alpha\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)+\frac{\cos^2\alpha}{\sin^2\alpha}\cdot\sin^2\alpha+\sin^2\alpha\)
\(=1+\cos^2\alpha+\sin^2\alpha\)
\(=1+1=2\)
\(A=sin^2a+cos^2a+\left(tana\cdot cota\right)^2\)
\(=1+1^2\)
\(=1+1=2\)
Bài làm:
Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\frac{9}{25}+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=\frac{16}{25}\)
\(\Rightarrow\cos\alpha=\frac{4}{5}\)
Từ đó ta dễ dàng tính được:
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{3}{4}\) ; \(\cot\alpha=\frac{\cos\alpha}{\sin\alpha}=\frac{4}{3}\)