Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nhé !
x2 + mx - 1 = 0 có Δ= m2 - 4 ( x - 1 ) = m2 + 4 \(\ge\)0 \(\forall\)x \(\in\)R \(\Rightarrow\)phương trình luôn có 2 nghiệm phân biệt
Theo định lý Viete, ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1x_2=-1\end{cases}}\)
Theo giả thiết: x21 + x22 = 5x1x2 \(\Leftrightarrow\)( x1 + x2 ) 2 = 7x1x2
\(\Rightarrow\)( - m ) 2 = 7 ( - 1 ) \(\Rightarrow\)m2 = - 7 \(\Leftrightarrow\)m \(\in\)\(\varnothing\)
Vậy không tồn tại m thõa ycbt
Ta có: \(\Delta=\left(-m\right)^2+4.3=m^2+12>0\)
=> pt luôn có 2 nghiệm phân biệt
Theo hệ thức vi-et, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)
Theo bài ra, ta có: x12 + x22 = 5m
<=> (x1 + x2)2 - 2x1x2 = 5m
<=> m2 + 6 = 5m
<=> x2 - 5m + 6 = 0
<=> x2 - 2m - 3m + 6 = 0
<=> (m - 2)(m - 3)= 0
<=> \(\orbr{\begin{cases}m=2\\m=3\end{cases}}\)
a, \(x^2-mx+m-1=0\)
Thay m = 4 ta đc :
\(x^2-4x+4-1=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)