K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

O A M B C H K d

a) Ta có: MB và MC là 2 tiếp tuyến kẻ từ M tới đường tròn (O) => MB = MC và MO là phân giác ^BMC

Xét \(\Delta\)BCM cân tại M có đường phân giác MO => MO vuông góc BC tại H

=> ^OHK = 90=> \(\Delta\)OHK ~ \(\Delta\)OAM (g.g) => \(\frac{OH}{OA}=\frac{OK}{OM}\Rightarrow OA.OK=OH.OM\)

Xét \(\Delta\)MBO có ^MBO = 900 và BH vuông góc MO tại H 

\(\Rightarrow OH.OM=OB^2=R^2\) (Hệ thức lượng trg tam giác vuông)

\(\Rightarrow OA.OK=R^2\) => OA.OK có giá trị ko đổi (đpcm).

\(\Leftrightarrow OK=\frac{R^2}{OA}\). Mà R2 và OA có độ dài ko đổi => OK có độ dài ko đổi.

Do K nằm trên OA cố định và OK ko đổi nên điểm K cố định. 

=> BC luôn đi qua điểm K cố định (vì BC cắt OA tại K) (đpcm).

b) Ta thấy: ^OHK = 900 và OK không đổi (cmt)=> Điểm H di động trên 1 đường tròn cố đinh có đường kính OK.

c)  Tứ giác MBOC có 2 đường chéo vuông góc với nhau nên \(S_{MBOC}=\frac{OM.BC}{2}\)

Ta có: \(OM\ge OA\)(Quan hệ đg xiên hình chiếu) \(\Rightarrow S_{MBOC}\ge\frac{OA.BC}{2}=R.BC\)(1)

Khi đó thì BC vuông góc OA  => H trùng K => BC = 2.BK

Lại có: \(OK=\frac{R^2}{OA}=\frac{R^2}{2R}=\frac{R}{2}\). Áp dụng ĐL Pytago cho \(\Delta\)BKO:

\(\Rightarrow BK^2=OB^2-OK^2=R^2-\frac{R^2}{4}=\frac{3R^2}{4}\Leftrightarrow BK=\frac{\sqrt{3}.R}{2}\)

\(\Rightarrow BC=2.BK=\sqrt{3}.R\)(2) 

Thế (2) vào (1) ta có: \(S_{MBOC}\ge\)\(\sqrt{3}.R.R=R^2\sqrt{3}\)

Vậy \(S_{MBOC}\)nhỏ nhất <=> Điểm M trùng với điểm A và \(Min_{S_{MBOC}}=R^2\sqrt{3}.\)

21 tháng 7 2018

Bạn học trường THCS Ba Mỹ phải không?

Mình trường THCS Phú Ngãi?

3 tháng 1 2018

a ta có \(\Delta\)OHK đồng dạng \(\Delta\)OAM \(\Rightarrow\)\(\frac{OK}{OM}\)=\(\frac{OH}{OA}\)\(\Rightarrow\)OK.OA=OH.OM

OM\(\perp\)BC\(\Leftrightarrow\)OC=OB NÊN O\(\in\)Đường trung trực của BC

MC=MB\(\Leftrightarrow\)M\(\in\)Đường trung trực của BC \(\Rightarrow\)OM\(\perp\)BC

XÉT \(\Delta\)OCM vuông tại C CH\(\perp\)OM\(\Rightarrow\)OC2=OH.OM \(\Rightarrow\)OK.OA ko đổi

3 tháng 1 2018

a, tam giác 0HK đồng dạng với 0AM

0K/0M = 0H / 0A

nên 0K .0A = 0H.0M

em chúng minh 0M vuông góc với BC

0C = 0B nên 0 thuộc đường trung trực của BC
MC = MB nên M thuộc trung trực của BC
nên 0M là trung trực của BC
nên 0M vuông góc với BC tại H

tam giác 0CM vuông tại C , CH vuông góc với 0M

nên 0C^2 = 0H, 0M

nên không đổi nhé

Em chứng minh K không đổi đi

Theo câu a thầy chứng minh bên trên thì có:

OA.OK=OH.OM=OB^2=R^2

=>OA.OK=R^2=>OK=R^2/OA

Gọi I là trung điểm OK

tam giác OHK vuông tại H nên ta có:IH=1/2OK=R^2/2OA

mà O,A không đổi nên OA không đổi

=>IH không đổi

Hay H thuộc đường tròn tâm I bán kính R^2/2OA

với I là điểm nằm giữa O và A thỏa mãn OI=1/2OK=R^2/2OA

(đường tròn có tâm nằm trên đường thẳng OA và đi qua O bán kính R^2/2OA

Câu c em làm như sau nhé

Diện tích tứ giác MBOC=OM.HC

nên để diện tích tứ giác MBOC min thì OM.HC Min

Xét:OM^2.HC^2=OM^2.(OC^2-OH^2)=OM^2.OC^2-OM^2.OH^2=OM^2.R^2-R^4 (Do OM.OH=R^2)

=>Để OM,HC min thì OM^2.R^2 min hay OM^2 Min

mà OM>=OA (do OM là cạnh huyền của tam giác vuông OAM)

=>OM min <=>OM=OA hay M trùng với A

Khi đó OM^2.HC^2=(2R)^2.R^2-R^4=3R^4

=>Diện tích tứ giác MBOC Min=căn 3 R^2 <=>M trùng với A

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')