Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ta có \(\Delta\)OHK đồng dạng \(\Delta\)OAM \(\Rightarrow\)\(\frac{OK}{OM}\)=\(\frac{OH}{OA}\)\(\Rightarrow\)OK.OA=OH.OM
OM\(\perp\)BC\(\Leftrightarrow\)OC=OB NÊN O\(\in\)Đường trung trực của BC
MC=MB\(\Leftrightarrow\)M\(\in\)Đường trung trực của BC \(\Rightarrow\)OM\(\perp\)BC
XÉT \(\Delta\)OCM vuông tại C CH\(\perp\)OM\(\Rightarrow\)OC2=OH.OM \(\Rightarrow\)OK.OA ko đổi
a, tam giác 0HK đồng dạng với 0AM
0K/0M = 0H / 0A
nên 0K .0A = 0H.0M
em chúng minh 0M vuông góc với BC
0C = 0B nên 0 thuộc đường trung trực của BC
MC = MB nên M thuộc trung trực của BC
nên 0M là trung trực của BC
nên 0M vuông góc với BC tại H
tam giác 0CM vuông tại C , CH vuông góc với 0M
nên 0C^2 = 0H, 0M
nên không đổi nhé
Em chứng minh K không đổi đi
Theo câu a thầy chứng minh bên trên thì có:
OA.OK=OH.OM=OB^2=R^2
=>OA.OK=R^2=>OK=R^2/OA
Gọi I là trung điểm OK
tam giác OHK vuông tại H nên ta có:IH=1/2OK=R^2/2OA
mà O,A không đổi nên OA không đổi
=>IH không đổi
Hay H thuộc đường tròn tâm I bán kính R^2/2OA
với I là điểm nằm giữa O và A thỏa mãn OI=1/2OK=R^2/2OA
(đường tròn có tâm nằm trên đường thẳng OA và đi qua O bán kính R^2/2OA
Câu c em làm như sau nhé
Diện tích tứ giác MBOC=OM.HC
nên để diện tích tứ giác MBOC min thì OM.HC Min
Xét:OM^2.HC^2=OM^2.(OC^2-OH^2)=OM^2.OC^2-OM^2.OH^2=OM^2.R^2-R^4 (Do OM.OH=R^2)
=>Để OM,HC min thì OM^2.R^2 min hay OM^2 Min
mà OM>=OA (do OM là cạnh huyền của tam giác vuông OAM)
=>OM min <=>OM=OA hay M trùng với A
Khi đó OM^2.HC^2=(2R)^2.R^2-R^4=3R^4
=>Diện tích tứ giác MBOC Min=căn 3 R^2 <=>M trùng với A
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
O A M B C H K d
a) Ta có: MB và MC là 2 tiếp tuyến kẻ từ M tới đường tròn (O) => MB = MC và MO là phân giác ^BMC
Xét \(\Delta\)BCM cân tại M có đường phân giác MO => MO vuông góc BC tại H
=> ^OHK = 900 => \(\Delta\)OHK ~ \(\Delta\)OAM (g.g) => \(\frac{OH}{OA}=\frac{OK}{OM}\Rightarrow OA.OK=OH.OM\)
Xét \(\Delta\)MBO có ^MBO = 900 và BH vuông góc MO tại H
\(\Rightarrow OH.OM=OB^2=R^2\) (Hệ thức lượng trg tam giác vuông)
\(\Rightarrow OA.OK=R^2\) => OA.OK có giá trị ko đổi (đpcm).
\(\Leftrightarrow OK=\frac{R^2}{OA}\). Mà R2 và OA có độ dài ko đổi => OK có độ dài ko đổi.
Do K nằm trên OA cố định và OK ko đổi nên điểm K cố định.
=> BC luôn đi qua điểm K cố định (vì BC cắt OA tại K) (đpcm).
b) Ta thấy: ^OHK = 900 và OK không đổi (cmt)=> Điểm H di động trên 1 đường tròn cố đinh có đường kính OK.
c) Tứ giác MBOC có 2 đường chéo vuông góc với nhau nên \(S_{MBOC}=\frac{OM.BC}{2}\)
Ta có: \(OM\ge OA\)(Quan hệ đg xiên hình chiếu) \(\Rightarrow S_{MBOC}\ge\frac{OA.BC}{2}=R.BC\)(1)
Khi đó thì BC vuông góc OA => H trùng K => BC = 2.BK
Lại có: \(OK=\frac{R^2}{OA}=\frac{R^2}{2R}=\frac{R}{2}\). Áp dụng ĐL Pytago cho \(\Delta\)BKO:
\(\Rightarrow BK^2=OB^2-OK^2=R^2-\frac{R^2}{4}=\frac{3R^2}{4}\Leftrightarrow BK=\frac{\sqrt{3}.R}{2}\)
\(\Rightarrow BC=2.BK=\sqrt{3}.R\)(2)
Thế (2) vào (1) ta có: \(S_{MBOC}\ge\)\(\sqrt{3}.R.R=R^2\sqrt{3}\)
Vậy \(S_{MBOC}\)nhỏ nhất <=> Điểm M trùng với điểm A và \(Min_{S_{MBOC}}=R^2\sqrt{3}.\)
Bạn học trường THCS Ba Mỹ phải không?
Mình trường THCS Phú Ngãi?