Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
Tính chẵn lẻ của bx2 phụ thuộc vào b
Tính chẵn lẻ của cx phụ thuộc vào c
d là số lẻ
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên
Hơi khó hỉu chút nhé ahihi
Ta có: \(f\left(1\right)=a+b+c=\left(a+c\right)+b=2^{2006}+2^{2007}\)
\(f\left(-1\right)=a-b+c=\left(a+c\right)-b=2^{2006}-2^{2007}\)
\(A=f\left(1\right)+f\left(-1\right)=\left(2^{2006}+2^{2007}\right)+\left(2^{2006}-2^{2007}\right)=2.2^{2006}=2^{2007}\)
\(B=f\left(1\right)-f\left(-1\right)=\left(2^{2006}+2^{2007}\right)-\left(2^{2006}-2^{2007}\right)=2.2^{2007}=2^{2008}\)
\(a+c=b+2018\Leftrightarrow a-b+c=2018\Rightarrow f\left(-1\right)=a-b+c=2018\)
Ta có: f(0) = c \(⋮\) 3
f(1) = a + b + c \(⋮\) 3 \(\Rightarrow\) a + b \(⋮\) 3 (1)
f(-1) = a - b + c \(⋮\) 3 \(\Rightarrow\) a - b \(⋮\) 3 (2)
Từ (1) và (2) suy ra a + b + a - b \(⋮\) 3 và a + b - a + b \(⋮\) 3
\(\Rightarrow\) \(\left\{{}\begin{matrix}2a⋮3\\2b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\end{matrix}\right.\)
Vậy a, b, c \(⋮\) 3
+ \(\left\{{}\begin{matrix}f\left(0\right)⋮3\\f\left(1\right)⋮3\\f\left(-1\right)⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c⋮3\\a+b+c⋮3\\a-b+c⋮3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b⋮3\\a-b⋮3\\c⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a⋮3\\-2b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\\c⋮3\end{matrix}\right.\)
\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)
\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)
\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)
\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)
\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)
\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)
\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)
\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)
\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)
\(h\left(x\right)=0+x+6+x^3\)
\(h\left(x\right)=x^3+x+6\)
d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9
<=> h(x) = -2x2 - x + 9 - f(x) + g(x)
<=> h(x) = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3
<=> h(x) = x3 + x.
Vậy h(x) = x3 + x
kho the