\(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2022

\(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

\(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt \(\hept{\begin{cases}x+1=u\\y-2=v\end{cases}}\Rightarrow A=\sqrt{u^4+1}+\sqrt{v^4+1}\)(với \(u,v\inℝ\))

Điều kiện đã cho ban đầu trở thành \(\left(u+1\right)\left(v+1\right)=\frac{9}{4}\)

\(\Leftrightarrow uv+u+v+1=\frac{9}{4}\Leftrightarrow uv+u+v=\frac{5}{4}\)

Ta có: \(\hept{\begin{cases}\left(2u-1\right)^2\ge0\forall u\inℝ\\\left(2v-1\right)^2\ge0\forall v\inℝ\end{cases}}\Leftrightarrow\hept{\begin{cases}4u^2-4u+1\ge0\\4v^2-4v+1\ge0\end{cases}}\forall u,v\inℝ\)

\(\Rightarrow\hept{\begin{cases}4u^2+1\ge4u\\4v^2+1\ge4v\end{cases}}\Rightarrow u^2+v^2\ge u+v-\frac{1}{2}\forall u,v\inℝ\)(*)

và \(\left(u-v\right)^2\ge0\forall u,v\inℝ\Leftrightarrow u^2-2uv+v^2\ge0\forall u,v\inℝ\)

\(\Rightarrow u^2+v^2\ge2uv\forall u,v\inℝ\Leftrightarrow\frac{1}{2}\left(u^2+v^2\right)\ge uv\forall u,v\inℝ\)(**)

Cộng theo vế của (*) và (**), ta được: \(\frac{3}{2}\left(u^2+v^2\right)\ge uv+u+v-\frac{1}{2}=\frac{5}{4}-\frac{1}{2}=\frac{3}{4}\)

\(\Rightarrow u^2+v^2\ge\frac{1}{2}\)(**

Áp dụng bất đẳng thức Minkowski, ta được:

\(A=\sqrt{u^4+1}+\sqrt{v^4+1}\ge\sqrt{\left(u^2+v^2\right)^2+\left(1+1\right)^2}\)

\(=\sqrt{\left(u^2+v^2\right)^2+4}\ge\sqrt{\left(\frac{1}{2}\right)^2+4}=\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)

Đẳng thức xảy ra khi \(u=v=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{5}{2}\)

Vậy GTNN của A là \(\frac{\sqrt{17}}{2}\)đạt được khi \(x=-\frac{1}{2};y=\frac{5}{2}\)

24 tháng 2 2020

Đặt \(a=2+x;b=y-1\) thì \(ab=\frac{9}{4}\)

Thì \(\sqrt{x^4+4x^3+6x^2+4x+2}=\sqrt{a^4-4a^3+6a^2-4a+2}\)

và \(\sqrt{y^4-8y^3+24y^2-32y+17}=\sqrt{b^4-4b^3+6b^2-4b+2}\) (cái này dùng phương pháp đồng nhất hệ số là xong)

Vậy ta tìm Min \(A=\sqrt{a^4-4a^3+6a^2-4a+2}+\sqrt{b^4-4b^3+6b^2-4b+2}\)

\(=\sqrt{\left(a^4-4a^3+4a^2\right)+2\left(a^2-2a+1\right)}+\sqrt{\left(b^4-4b^3+4b^2\right)+2\left(b^2-2b+1\right)}\)

\(=\sqrt{\left(a^2-2a\right)^2+\left[\sqrt{2}\left(a-1\right)\right]^2}+\sqrt{\left(b^2-2b\right)^2+\left[\sqrt{2}\left(b-1\right)\right]^2}\)

\(\ge\sqrt{\left(a^2+b^2-2a-2b\right)^2+2\left(a+b-2\right)^2}\)

\(\ge\sqrt{\left[\frac{\left(a+b\right)^2}{2}-2\left(a+b\right)\right]^2+2\left(a+b-2\right)^2}\)

\(=\sqrt{\left(\frac{t^2}{2}-2t\right)^2+2\left(t-2\right)^2}\left(t=a+b\ge2\sqrt{ab}=3\right)\)

\(=\sqrt{\frac{1}{4}\left(t-1\right)\left(t-3\right)\left(t^2-4t+5\right)+\frac{17}{4}}\ge\frac{\sqrt{17}}{2}\)

Trình bày hơi lủng củng, sr.

15 tháng 6 2016

Bài 1

Từ giả thiết, bình phương 2 vế, ta được:

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)

\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)

\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)

\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)

\(=2014\)

\(\Rightarrow A=\sqrt{2014}.\)

Bài 2:

Đặt \(\sqrt{2015}=a>0\)

\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)

Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)

\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)

\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)

Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)

Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)

Bài 3

Áp dụng bất đẳng thức Côsi

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)

Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)

Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)

15 tháng 6 2016

Em mới hoc lớp 7

2 tháng 9 2016

Nhân 2 vế của pt đầu với \(x-\sqrt{x^2+3}\) đc:

\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)

Tương tự nhân 2 vế của pt đầu với \(y-\sqrt{y^2+3}\) đc:

\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)

Từ (1) và (2) =>2(x+y)=0

=>x+y=0<=>x=-y

<=>x2013=-y2013

<=>x2013+y2013=0

A=x2013+y2013+1=1

10 tháng 12 2021

Theo đề bài, ta có:

x3+y3=x2−xy+y2x3+y3=x2−xy+y2

hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0

⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1

+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52

+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4

Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá