K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

Đề giả thiết cho như vậy hay là \(a^3+b^3+6ab\le8???\)

8 tháng 5 2019

Đề cho như vậy. (Đề đúng rồi đấy)

24 tháng 10 2019

\(\sqrt{a^2+3a+5}\ge\frac{5a+13}{6}\Leftrightarrow a^2+3a+5\ge\frac{25a^2+130a+169}{36}\)

\(\Leftrightarrow36a^2+108a+180\ge25a^2+130a+169\Leftrightarrow11a^2-22a+11\ge0\)

\(\Leftrightarrow11\left(a-1\right)^2\ge0\forall a\inℝ\)

Dấu = xảy ra khi a=1

24 tháng 10 2019

Ta có:

\(\sqrt{a^2+3ab+5b^2}=\sqrt{\left(\frac{25a^2}{36}+\frac{130ab}{36}+\frac{169}{36}\right)+\frac{11}{36}\left(a^2-2ab+b^2\right)}\)

\(=\sqrt{\left(\frac{5a}{6}+\frac{13b}{6}\right)^2+\frac{11}{36}\left(a-b\right)^2}\ge\frac{5a+13b}{6}\)

Tương tự:\(\sqrt{b^2+3bc+5c^2}\ge\frac{5b+13c}{6};\sqrt{c^2+3ca+5a^2}\ge\frac{5c+13a}{6}\)

Khi đó:\(P=\sqrt{a^2+3ab+5b^2}+\sqrt{b^2+3bc+5c^2}+\sqrt{c^2+3ac+5a^2}\)

\(\ge\frac{5a+13b+5b+13c+5c+13a}{6}=\frac{18\left(a+b+c\right)}{6}=3\left(a+b+c\right)=9\)

Dấu "=" xảy ra tại \(a=b=c=1\)

17 tháng 2 2020

https://olm.vn/hoi-dap/detail/239526218296.html

27 tháng 2 2020

Sử dụng phân tích tuyệt vời của Ji Chen:

\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

11 tháng 5 2019

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a^2+b^2+c^2}\ge\frac{a+b+c}{\sqrt{3}}=\frac{2}{\sqrt{3}}\left(1\right)\)

Từ giả thuyết suy ra \(0\le a,b,c\le2\)

\(\Rightarrow\hept{\begin{cases}ab\ge0\\bc\ge0\\ca\ge0\end{cases}\left(2\right)}\)

\(\Rightarrow\hept{\begin{cases}a^2\le2a\\b^2\le2b\\c^2\le2c\end{cases}\left(3\right)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)suy ra:

\(P\ge\frac{2}{\sqrt{3}}+\frac{1}{4}=\frac{8+\sqrt{3}}{4\sqrt{3}}\)

11 tháng 5 2019

tui đăng nhầm nhe đang làm nháp lở đăng

30 tháng 12 2018

Có lẽ là BĐT Cô-si

cứ cho a,b,c>0 thì phải nghĩ ngay đến BĐT cô-si

30 tháng 12 2018

\(A=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}+\frac{c}{\sqrt{3+c^2}}\)

\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+bc+ca+ab}}+\frac{c}{\sqrt{c^2+ca+ab+bc}}\)

\(=\frac{\sqrt{a}\cdot\sqrt{a}}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{\sqrt{b}\cdot\sqrt{b}}{\sqrt{\left(b+c\right)\left(a+b\right)}}+\frac{\sqrt{c}\cdot\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\frac{\sqrt{a}}{\sqrt{a+b}}\cdot\frac{\sqrt{a}}{\sqrt{c+a}}+\frac{\sqrt{b}}{\sqrt{b+c}}\cdot\frac{\sqrt{b}}{\sqrt{a+b}}+\frac{\sqrt{c}}{\sqrt{c+a}}\cdot\frac{\sqrt{c}}{\sqrt{c+b}}\)

\(\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}+\frac{\frac{b}{b+c}+\frac{b}{a+b}}{2}+\frac{\frac{c}{c+a}+\frac{c}{b+c}}{2}\)

\(=\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}}{2}=\frac{3}{2}\)

Vậy Max A = 3/2 khi a = b = c = 1. (Max not Min) 

5 tháng 11 2019

\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\) ( đpcm)
Dấu " = " xảy ra khi \(a=b=c=3\)

Chúc bạn học tốt !!!

3 tháng 9 2018

Do a,b,c dương nên AD BĐT Cauchy:

\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{9}{3+ab+bc+ca}\)ca    (1)

a2+b2+c2\(\ge\)ab+bc+ca\(\Rightarrow3+a^2+b^2+c^2\ge3+ab+bc+ca\)

\(\Rightarrow\frac{9}{6}\le\frac{9}{3+ab+bc+ca}\left(a^2+b^2+c^2=3\right)\)  (2)

\(\left(1\right),\left(2\right)\Rightarrow P\ge\frac{3}{2}\)

\(\text{Dấu = khi a=b=c=1}\)

12 tháng 4 2018

\(Từ GT, ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge6\) Áp dụng bđt AM - GM, ta lại có: \(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\) \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\) Cộng theo vế ta có:  \(3\left(\text{∑}\frac{1}{a^2}\right)+3\ge2\left(\text{∑}\frac{1}{a}+\text{∑}\frac{1}{ab}\right)\Leftrightarrow\text{∑}\frac{1} {a^2}\ge3\left(đ\text{pcm}\right)\) \(\text{Dau }"="\Leftrightarrow a=b=c=1\)

11 tháng 4 2018

Từ GT, ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge6\)

Áp dụng bđt AM - GM, ta lại có:

\(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\)

Cộng theo vế ta có: 

\(3\left(\text{∑}\frac{1}{a^2}\right)+3\ge2\left(\text{∑}\frac{1}{a}+\text{∑}\frac{1}{ab}\right)\Leftrightarrow\text{∑}\frac{1}{a^2}\ge3\left(đ\text{pcm}\right)\)

\(\text{Dau }"="\Leftrightarrow a=b=c=1\)

27 tháng 5 2020

Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)

\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)

Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Ai có cách hay?

27 tháng 5 2020

1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.

2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)

\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)

\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)