Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=x^2-2x+\frac{1}{x-1}\)
\(A=x^2-2x+1-\frac{x-2}{x-1}\)
\(A=\left(x-1\right)^2+\frac{-\left(x-2\right)}{x-1}\ge\frac{-\left(x-2\right)}{x-1}\)
Do \(x-2>x-1\Rightarrow-\left(x-2\right)< x-1\)
Mà \(\frac{-\left(x-2\right)}{x-1}\ge-1\)
Vậy Min A = -1 <=> x = 1
a) 151 - 291 : 288 + 12 . 3
= 151 - 23 + 1 . 3
= 151 - 8 + 3
= 143 + 3
= 146
b) 1449 - { [ ( 216 +184 ) : 8 ] . 9 }
= 1449 - { [ 400 : 8 ] . 9 }
= 1449 - { 50 . 9 }
= 1449 - 450
= 999
c) 23 . 75 + 25 . 23 + 180
= 23 . ( 75 + 25 ) + 180
= 23 . 100 + 180
= 2300 + 180
= 2480
d) 80 - ( 4 . 52 - 3 . 23 )
= 80 - ( 4 . 25 - 3 . 8 )
= 80 - ( 100 - 24 )
= 80 - 76
= 4
2. y = cot g(x2 + 2x)
Ta có: ( cot gu)' = - \(\frac{u^'}{sin^2u}\)
y' = - \(\frac{\left(x^2+2x\right)}{sin^2\left(x^2+2x\right)}=-\frac{2.\left(x+1\right)}{sin^2\left(x^2+2x\right)}\)
4. y = (1 + tgx)3
y = 3.(1 + tgx)2 (1 + 1gx)' (tgx)' = 1 + tg2x
= 3.(1 + tgx)2 (1 + tg2x) (un) = n.un-1 .u'
5. y = \(\sqrt{1+3cos^2x}\)
\(y=\frac{\left(1+3cos^2x\right)}{2.\sqrt{1+3cos^2}x}=\frac{-3.2.sĩn.cosx}{2.\sqrt{1+3cos^2}x}=\frac{-3sinx.cosx}{\sqrt{1+3cos^2}x}\)