Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi h/s cần tìm có dạng: y = ax + b (a khác 0)
PT hoành độ giao điểm của d1 và d2 là: 2x - 1 = x <=> x = 1
Thay x = 1 vào hs y = x ta dc y = 1
Vậy giao điểm của d1 và d2 có tọa độ là (1;1)
Vì hs cần tìm // vs d3 nên a = -3 và b khác 2
và hs cần tìm đi qua giao điểm của d1 và d2 nên thay x = 1; y = 1 vào hs y = ax + b ta dc: a + b = 1
hay -3 + b = 1 => b = 4
Vậy h/s cần tìm là: y = -3x + 4
PTHĐGĐ của (d1) và (d2):
x = 2x - 1
<=> x = 1
thay x = 1 vào (d2) ta được y = 1
=> điểm (1; 1) là giao điểm của (d1) và (d2)
gọi (d) : ax + b
do (d) // (d3) và đi qua giao điểm của (d1) và (d2)
=> (d) // (d3) nên a = a' hay a = -3
và b # b' hay b # 2
lại có a + b = 1 => b = 4 (thỏa)
vậy (d): -3x + 4
Xét phương trình hoành độ giao điểm của (P) và (d) :
\(x^2+2x+m=0\)\(\Delta'=4-m\)
Vì (P) và (d) cắt nhau tại hai điểm phân biệt nên \(\Delta'>0\Rightarrow m< 4\)
Theo hệ thức Vi-et, ta có : \(\hept{\begin{cases}x_A+x_B=-2\\x_A.x_B=m\end{cases}}\)
\(\frac{1}{x_A^2}+\frac{1}{x_B^2}=6\Leftrightarrow\)\(\frac{x^2_A+x^2_B}{x_A^2.x_B^2}=6\Leftrightarrow\frac{\left(x_A+x_B\right)^2-2x_A.x_B}{x_A^2.x^2_B}=6\Rightarrow\frac{4-2m}{m^2}=6\Leftrightarrow6m^2+2m-4=0\Rightarrow m=-1\)hoặc \(m=\frac{2}{3}\)
Mình xin làm câu Vi-et thôi.
2/ \(2x^2-2mx-m-5=0\left(1\right)\)
a/ ( a = 2; b = -2m; c = -m - 5 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.2.\left(-m-5\right)\)
\(=4m^2+8m+40\)
\(=\left(2m\right)^2+8m+2^2-2^2+40\)
\(=\left(2m+2\right)^2+36>0\forall m\)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=\frac{2m}{2}=m\\P=x_1x_2=\frac{c}{a}=\frac{-m-5}{2}\end{cases}}\)
Ta có: \(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=15\)
\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2-2x_1x_2=15\)
\(\Leftrightarrow S^2-2P-4x_1x_2=15\)
\(\Leftrightarrow m^2-2.\frac{-m-5}{2}-4S=15\)
\(\Leftrightarrow m^2+\frac{2m+10}{2}-4m=15\)
Quy đồng bỏ mẫu, mẫu chung là 2:
\(\Leftrightarrow2m^2+2m+10-8m=15\)
\(\Leftrightarrow2m^2-6m+10=15\)
\(\Leftrightarrow2\left(m^2-3m+5\right)=15\)
\(\Leftrightarrow m^2-3m+5=\frac{15}{2}\)
\(\Leftrightarrow m^2-3m+5-\frac{15}{2}=0\)
\(\Leftrightarrow m^2-3m-\frac{5}{2}=0\)
\(\Leftrightarrow m^2-3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-\frac{5}{2}=0\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2-\frac{19}{4}=0\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\frac{19}{4}\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\left(\frac{\sqrt{19}}{2}\right)^2\)
\(\Leftrightarrow m-\frac{3}{2}=\frac{\sqrt{19}}{2}\Leftrightarrow m=\frac{3+\sqrt{19}}{2}\)
Vậy:..
Cho hàm số y=f(x)=x3-3x2+1
a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.
b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).
c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.
Câu 2:
c) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{1}{2}x^2=2x+6\)
\(\Leftrightarrow\dfrac{1}{2}x^2-2x-6=0\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow x^2-4x+4=16\)
\(\Leftrightarrow\left(x-2\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
Thay x=6 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot6^2=18\)
Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Vậy: Tọa độ giao điểm của (P) và (d) là (6;18) và (-2;2)
Câu 3:
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{1}=2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{1}=-1\end{matrix}\right.\)
Ta có: \(P=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1x_2\left(x_1+x_2\right)\)
\(=2^3-3\cdot\left(-1\right)\cdot2\)
\(=8+3\cdot2\)
\(=8+6=14\)
Vậy: P=14