Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2 câu 3 nè
2) a) (ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)(ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)
b) Chuyển vế rồi khai triển, search trên mạng cũng có
3) Áp dụng BĐT Bunyakovsky, ta có:
x2+y2≥(x+y)22=222=2
bài 3 : Theo bđt AM-GM dạng cộng mẫu thì
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)
Vậy ta có điều phải chứng minh
bài 4
a,Ta có điều hiển nhiên sau : \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(< =>a+b-2\sqrt{ab}\ge0\)
\(< =>a+b\ge2\sqrt{ab}\)(hoàn tất)
b, đề bị lỗi
c,\(12=3a+5b\ge2\sqrt{15ab}\Leftrightarrow ab\le\frac{12}{5}\)
Dấu "=" xảy ra khi và chỉ khi \(a=2;b=\frac{6}{5}\)
Vậy ta có điều phải chứng minh
Biến đổi tương đương \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(< =>\left(a+b\right)\left(a^2-ab+b^2\right)-a^2b-b^2a\ge0\)
\(< =>a^2+b^2-ab-ab\left(a+b\right)\ge0\)
\(< =>a^2+b^2-2ab\ge0\)
\(< =>\left(a-b\right)^2\ge0\)*đúng*
Vậy ta đã hoàn tất chứng minh
Câu 1:
G/s \(\sqrt{7}\) là số hữu tỉ có thể viết dưới dạng phân số tối giản \(\frac{a}{b}\) \(\left(a,b\inℤ\right)\)
=> \(\frac{a}{b}=\sqrt{7}\)
<=> \(\left(\frac{a}{b}\right)^2=7\)
=> \(a^2=7b^2\)
=> \(a^2⋮b^2\) , mà theo đề bài phân số tối giản
=> a không chia hết cho b => a2 không chia hết cho b2
=> vô lý
=> \(\sqrt{7}\) là số vô tỉ
Câu 2:
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) Ta có: \(\left(ac+bd\right)^2=a^2c^2+2abcd+b^2d^2\)
\(=a^2c^2+2\sqrt{a^2d^2.b^2c^2}+b^2d^2\)
\(\le a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ( bất đẳng thức Cauchy )
Dấu "=" xảy ra khi: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Câu 1: giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n
√7= m/n
⇒ 7 = m²/n²
⇒ m² =7n²
⇒ m² chia hết cho n²
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n)
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.
b,
Chứng minh: (a² + b²)(c² + d²) ≥ (ac + bd)² ↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)² ↔ (ad)² + (bc)² ≥ 2abcd ↔ (ad)² - 2abcd + (bc)² ≥ 0 ↔ (ad - bc)² ≥ 0
Dấu " = " xảy ra khi {\displaystyle {\frac {a}{c}}={\frac {b}{d}}}