Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta ACF\) và \(\Delta ABE\)
\(\widehat{BAC}\left(chung\right)\)
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\Rightarrow\Delta ACF\) đồng dạng \(\Delta ABE\)
\(\Rightarrow\frac{AC}{AF}=\frac{AB}{AE}\)
\(\Rightarrow AC\cdot AE=AF\cdot AB\left(dpcm\right)\)
b) Theo cmt: \(\Delta ACF\text{đồng dạng}\Delta ABE\)
\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\)
xét \(\Delta AFE\)và\(\Delta ACB\)
\(\widehat{BAC}\left(chung\right)\)
\(\frac{AE}{AF}=\frac{AB}{AC}\) (cmt)
\(\Rightarrow\)\(\Delta AFE\)đồng dạng \(\Delta ACB\)(dpcm)
a) Xét \(\Delta EAB\)và \(\Delta FAC\)có :
\(\widehat{BEA}=\widehat{CFA}\left(=90^0\right)\)
\(\widehat{A}\)chung
\(\Rightarrow\Delta EAB\approx\Delta FAC\)(g.g)
\(\Rightarrow\frac{EA}{FA}=\frac{BA}{CA}\)(2 cặp cạnh tương ứng tỉ lệ)\(\Rightarrow\frac{EA}{BA}=\frac{FA}{CA}\)(tính chất của tỉ lệ thức)
Xét \(\Delta AEF\)và \(\Delta ABC\)có:
\(\widehat{A}\)chung.
\(\frac{EA}{BA}=\frac{FA}{CA}\)(chứng minh trên)
\(\Rightarrow\Delta AEF\approx\Delta ABC\left(c.g.c\right)\)(điều phải chứng minh)