Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N H E F O d
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=26\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{120}{13}\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta đươc:
\(AH^2+HB^2=AB^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{50}{13}\left(cm\right)\)
b) Xét tam giác OMN có BC//MN (gt)
\(\Rightarrow\frac{OM}{OC}=\frac{ON}{OB}\)( định lý Ta-let) (1)
Xét tam giác OME có ME// NC ( vì ME//AC )
\(\Rightarrow\frac{OE}{ON}=\frac{OM}{OC}\)( định lý Ta-let) (2)
\(\Rightarrow\frac{ON}{OB}=\frac{OE}{ON}\)
\(\Rightarrow ON^2=OE.OB\left(đpcm\right)\)
a) Xét ΔABC vuông tại A
BC2=AB2+AC2(định lí Py-ta-go)
⇒BC2=102+242
⇒BC2=100+576
⇒BC2=676
⇒BC2=\(\sqrt{676}\)
⇒BC=26(cm)
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc B chung
Do đó: ΔAHB\(\sim\)ΔCAB
Suy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(HB=\dfrac{AB^2}{BC}=9\left(cm\right)\)
HC=BC-HB=16(cm)
a: Xét ΔABC có DE//BC
nên AE/AC=AD/AB
=>AE/10=3/7
hay AE=30/7(cm)
b: Xét ΔABM có DI//BM
nên DI/BM=AI/AM(1)
Xét ΔACM có EI//MC
nên EI/MC=AI/AM(2)
Từ (1) và (2) suy ra DI/BM=EI/MC
=>DI=EI
hay I là trung điểm của DE
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
1. Xét tam giác ABD có MI // AB nên theo định lý Talet ta có:
\(\frac{MI}{AB}=\frac{DI}{DB}\)
Xét tam giác ABC có NI // AB nên theo định lý Talet ta có:
\(\frac{NI}{AB}=\frac{NC}{BC}\)
2. Xét tam giác BDC có IN // DC nên \(\frac{DI}{DB}=\frac{NC}{BC}\)
Từ đó ta có: \(\frac{MI}{AB}=\frac{NI}{AB}\Rightarrow MI=IN\)
Vậy I là trung điểm MN (đpcm)