Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B xác định\(\Leftrightarrow\hept{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}}\Rightarrow x\ne\pm1\)
b) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Mà x khác 1 nên x = 0
\(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)
\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{4}{x^2-1}\)
\(=\frac{x^2-2x+1-x^2-2x-1}{\left(x+1\right)\left(x-1\right)}+\frac{4}{x^2-1}\)
\(=\frac{-4x}{\left(x+1\right)\left(x-1\right)}+\frac{4}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{-4x+4}{\left(x+1\right)\left(x-1\right)}=\frac{-4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{-4}{x+1}\)
Thay x = 0 vào B, ta được \(P=\frac{-4}{0+1}=-4\)
Vậy P = -4 khi \(x^2-x=0\)
c) \(B=-3\Leftrightarrow\frac{-4}{x+1}=-3\Leftrightarrow x+1=\frac{4}{3}\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy B = -3 khi \(x=\frac{1}{3}\)
d) \(B< 0\Leftrightarrow\frac{-4}{x+1}< 0\Leftrightarrow x+1>0\Leftrightarrow x>-1\)
Vậy x > - 1 thì B < 0
tích cho cậu là ấn vào link hay là thích
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(A=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)
\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{x^2-4}\)
\(A=\frac{2x}{\left(x+2\right)^2}.\frac{x^2-4}{-x}=\frac{2\left(x-2\right)}{-\left(x+2\right)}=\frac{-2\left(x-2\right)}{x+2}\)
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
yx=10⇒x=10y
M=\frac{16x^2-40xy}{8x^2-24xy}=\frac{8x\left(2x-5y\right)}{8x\left(x-3y\right)}=\frac{2x-5y}{x-3y}M=8x2−24xy16x2−40xy=8x(x−3y)8x(2x−5y)=x−3y2x−5y
=\frac{2.10y-5y}{10y-3y}=\frac{15}{7}=10y−3y2.10y−5y=715
Câu 2
a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne\pm3\end{cases}}\)
Ta có: A = \(\frac{x+1}{x+3}-\frac{x-1}{3-x}+\frac{2x-2x^2}{x^2-9}\)
A = \(\frac{\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x+3\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)}+\frac{2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{2x-6}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{2}{x+3}\)
b) Để A nhận giá trị dương <=> 2 \(⋮\)x + 3
<=> x + 3 \(\in\)Ư(2) = {1; 2}
Lập bảng:
x + 3 | 1 | 2 |
x | -2 | -1 |
Vậy ....
Answer:
Câu 1:
\(\left(5x-x-\frac{1}{2}\right)2x\)
\(=\left(4x-\frac{1}{2}\right)2x\)
\(=4x.2x-\frac{1}{2}.2x\)
\(=8x^2-x\)
\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)
\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)
\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)
\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)
\(=x^4+8x^3+19x^2+24x+48\)
Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\): \(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)
Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(= (x²+2xy+y²)-(x²-2xy+y²)\)
\(= x²+2xy+y²-x²+2xy-y²\)
\(= 4xy\)
\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)
Câu 2:
\(x^2+x=0\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(x^2.\left(x-1\right)+4-4x=0\)
\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)
Trường hợp 1: \(x-1=0\Rightarrow x=1\)
Trường hợp 2: \(x-2=0\Rightarrow x=2\)
Trường hợp 3: \(x+2=0\Rightarrow x=-2\)
Câu 3: Bạn xem lại đề bài nhé.
a) A có nghĩa\(\Leftrightarrow\hept{\begin{cases}2-x\ne0\\2+x\ne0\\x-3\ne0\end{cases}}\Rightarrow x\ne\pm2;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
\(=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{4-x^2}:\frac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)
\(=\frac{x^2+4x+4-4+4x-x^2+4x^2}{4-x^2}:\frac{x-3}{2-x}\)
\(=\frac{4x^2+8x}{4-x^2}.\frac{2-x}{x-3}\)
\(=\frac{4x\left(x+2\right)}{\left(2+x\right)\left(x-3\right)}=\frac{4x}{x-3}\)
b) \(A=1\Leftrightarrow4x=x-3\Leftrightarrow x=-1\)
c) \(A>0\Leftrightarrow\frac{4x}{x-3}>0\)
TH1: \(\hept{\begin{cases}4x>0\\x-3>0\end{cases}}\Leftrightarrow x>3\)
TH2: \(\hept{\begin{cases}4x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)
Giúp mình với đúng mik tích cho :>>
a, \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right)\frac{x^2+4x+4}{8}\)ĐK : \(x\ne\pm2\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right)\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+2-2x+2}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}=\frac{4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{2\left(x-2\right)}=\frac{x+2}{2x-4}\)
b, A = x hay
\(\frac{x+2}{2x-4}=x\Leftrightarrow x+2=2x^2-4x\)
\(\Leftrightarrow5x+2-2x^2=0\)vô nghiệm
tương tự với A = x/2 nhé !