Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a)\(\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)
b)\(9a^2+3ab+\frac{1}{4}a^2\)
2.
a)\(\left(5x+2b\right)^2\)
b)\(\left(x+1\right)^2\)
c)\(\left(3x+1\right)^2\)
d)\(\left[\left(2x+3y\right)+1\right]^2\)
a) \(2a^{n+2}b^n-18a^nb^{n+2}\)
\(=2a^nb^n\left(a^2-9b^2\right)\)
\(=2a^nb^n\left(a-3b\right)\left(a+3b\right)\)
Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)
\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
d) Xem lại đề
a: \(\left(x+2\right)^2=x^2+2\cdot x\cdot2+2^2=x^2+4x+4\)
b: \(\left(2x+y\right)^2=\left(2x\right)^2+2\cdot2x\cdot y+y^2=4x^2+4xy+y^2\)
c: \(\left(x-3y\right)^2=x^2-2\cdot x\cdot3y+\left(3y\right)^2=x^2-6xy+9y^2\)
d: \(\left(\dfrac{1}{2}x-y\right)^2=\left(\dfrac{1}{2}x\right)^2-2\cdot\dfrac{1}{2}x\cdot y+y^2\)
\(=\dfrac{1}{4}x^2-xy+y^2\)
e: \(\left(x^2-y\right)^2=\left(x^2\right)^2-2\cdot x^2y+y^2=x^4-2x^2y+y^2\)
a) \(\left(x+2\right)^2\)
\(=x^2+2\cdot x\cdot2+2^2\)
\(=x^2+4x+4\)
b) \(\left(2x+y\right)^2\)
\(=\left(2x\right)^2+2\cdot2x\cdot y+y^2\)
\(=4x^2+4xy+y^2\)
c) \(\left(x-3y\right)^2\)
\(=x^2-2\cdot x\cdot3y+\left(3y\right)^2\)
\(=x^2-6xy+9y^2\)
d) \(\left(\dfrac{1}{2}x-y\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2-2\cdot\dfrac{1}{2}x\cdot y+y^2\)
\(=\dfrac{x^2}{4}-xy+y^2\)
e) \(\left(x^2-y\right)^2\)
\(=\left(x^2\right)^2-2\cdot x^2\cdot y+y^2\)
\(=x^4-2x^2y+y^2\)