Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì \(\left|3x-2\right|\ge0\forall x\)
\(\Rightarrow2\left|3x-2\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow2\left|3x-2\right|=0\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy Amin = - 1 <=> x = 2/3
b. Vì \(\left|x-4x\right|\ge0\forall x\)
\(\Rightarrow5\left|1-4x\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow5\left|1-4x\right|=0\Leftrightarrow1-4x=0\Leftrightarrow x=\frac{1}{4}\)
Vậy Bmin = - 1 <=> x = 1/4
c. Vì \(x^2\ge0\forall x;\left|y-2\right|\ge0\forall y\)
\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy Cmin = - 1 <=> x = 0 ; y = 2
d. Vì \(\left|x\right|\ge0\forall x\)\(\Rightarrow x+\left|x\right|\ge0\forall x\)
Dấu "=" xảy ra <=> x bé hơn hoặc bằng 0
Vậy Dmin = 0 <=> x bé hơn hoặc bằng 0
e.
+) Nếu x > hoặc bằng 7
=> E = | x - 7 | + 6 - x = x - 7 + 6 - x = -1
Vậy x > hoặc bằng 7 thì E có một giá trị duy nhất là -1
+) Nếu 0 < x < 7
=> E = | x - 7 | + 6 - x = - x + 7 + 6 - x = - 2x + 13 ( nhỏ nhất bằng 1 <=> x = 6 )
+) Nếu x bé hơn hoặc bằng 0
=> E = | x - 7 | + 6 - x = - x + 7 + 6 + x = 13
Vậy Emin = -1 <=> x lớn hơn hoặc bằng 7
Áp dụng BĐT trị tuyệt đối ta được:
\(A=\left|x\right|+\left|8-x\right|\)
\(\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xả ra khi và chỉ khi:
\(x\left(8-x\right)\ge0\)
\(\Leftrightarrow0\le x\le8\)
Vậy:\(A_{min}=8\Leftrightarrow0\le x\le8\)
Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)
Thay x+y=5 vào A ta có :
\(A\ge\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy Amin = 4 <=> x >=-1 và y >=2
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)
ta có \(\dfrac{5-3x}{4x-8}=\dfrac{-\dfrac{3}{4}\left(4x-8\right)-1}{4x-8}=-\dfrac{3}{4}-\dfrac{1}{4x-8}\)
x ∈ Z, x ≠ 2 nên 4x-8≠0
Mà \(\dfrac{1}{4x-8}< 1\Leftrightarrow-\dfrac{1}{4x-8}>-1\)
\(\Rightarrow E=-\dfrac{3}{4}-1=-\dfrac{7}{4}\)