K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để hàm số đồng biến thì 2m-1>0

hay \(m>\dfrac{1}{2}\)

b: Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m^2-1=3\\2m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne2\end{matrix}\right.\)

hay m=-2

Để hàm số y=(2m-3)x-5m+1 là hàm số bậc nhất thì \(2m-3\ne0\)

\(\Leftrightarrow2m\ne3\)

\(\Leftrightarrow m\ne\dfrac{3}{2}\)

a) Để hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(2m-3>0\)

\(\Leftrightarrow2m>3\)

hay \(m>\dfrac{3}{2}\)

Vậy: Khi hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(m>\dfrac{3}{2}\)

b) Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì \(\left\{{}\begin{matrix}2m-3=3\\-5m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=6\\-5m\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{-4}{5}\end{matrix}\right.\Leftrightarrow m=3\left(nhận\right)\)

Vậy: Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì m=3

21 tháng 1 2021

a. Tìm m để hàm số đồng biến.

Để hàm số trên đồng biến. => 2m-3 > 0

                                          <=> 2m > 3

                                          <=> m > 3/2

b. Tìm m để đồ thị hàm số (1) song song đường thẳng y=3x-5 

Để đồ thị hàm số (1)  song song đường thẳng y = 3x - 5 

=>   2m-3 = 3 và -5m+1 khác  - 5

<=> m = 3      và m khác 6/5

<=> m = 3  (tm)

 c. Tính góc tạo bởi đường thẳng y=3x-5 với trục Ox

Gọi góc tạo bởi đường thẳng y=3x-5 với trục Ox là a (a>0)

=> tan a = |3| 

=> tan a = 3

=> góc a = 71o 33'

 

 

 

2 tháng 12 2018

a)

đường thẳng (d1) song song với đường thẳng (d2) khi :

a = a' và  b  khác  b'

 suy ra :

\(m-1=3\)                \(\Leftrightarrow m=4\)

 vậy  đường thẳng (d1) song song với đường thẳng (d2) khi  m = 4

7 tháng 1 2018

1. Xét : m^2-2m+3 = (m^2-2m+1)+2 = (m-1)^2+2 > 0

=> hàm số trên luôn đồng biến trên tập xác định của nó

2. Để (d) đi qua A(2;8) thì :

8 = (m^2-2m+3).2 - 4

=> m=3 hoặc m=-1

3. Để (d) // (d') : y=3x+m-4 thì : m^2-2m+3=3 và -4 khác m-4

=> m=0 hoặc m=2 và m khác 0 => m=2

Tk mk nha

16 tháng 12 2023

a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0

=>2m<-3

=>\(m< -\dfrac{3}{2}\)

b: Để (d)//(d1) thì

\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)

=>m=5

c: Thay y=5 vào y=3x-1, ta được:

3x-1=5

=>3x=6

=>x=6/3=2

Thay x=2 và y=5 vào (d), ta được:

\(2\left(2m+3\right)-2m+5=5\)

=>\(4m+6-2m+5=5\)

=>2m+11=5

=>2m=-6

=>m=-6/2=-3

d: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)

=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)

\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)

=>\(B\left(-2m+5;0\right)\)

\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)

\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)

Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)

=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)

=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)

=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)

=>\(4m^2-20m+25-4m-6=0\)

=>\(4m^2-24m+19=0\)

=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)

24 tháng 7 2021

a) Để hàm số y = (2m - 3)x - 1 // với đường thẳng y = -5x + 3 

<=> \(\hept{\begin{cases}2m-3=-5\\-1\ne3\end{cases}}\)<=> 2m = -2 <=> m = -1

b) Hàm số y = (2m - 3)x - 1 đi qua điểm A(-1; 0) => x = -1 và y = 0

Do đó: 0 = (2m - 3).(-1) - 1 = 0 <=> 3 - 2m = 1 <=> 2m = 2 <=> m = 1

Vậy để đò thị hàm số đi qua A(-1; 0) <=> m = 0

c) Gọi tọa độ gđ của 3 đường thẳng y = (2m- 3 )x - 1 , y = 1 và y = 2x - 5 là (x0; y0)

Do đó: \(\hept{\begin{cases}y_0=\left(2m-3\right)x_0-1\\y_0=1\\y_0=2x_0-5\end{cases}}\) <=> \(\hept{\begin{cases}1=\left(2m-3\right)x_0-1\\2x_0-5=1\end{cases}}\) 

<=> \(\hept{\begin{cases}\left(2m-3\right)x_0=2\\2x_0=6\end{cases}}\) <=> \(\hept{\begin{cases}\left(2m-3\right).3=2\\x_0=3\end{cases}}\) <=> 2m - 3 = 2/3 <=> 2m = 11/3 <=> m = 11/6

Vậy m = 11/6 thì đồ thị hàm số đã cho và các đường thẳng y = 0 và y = 2x - 5 đồng quy tại 1 điểm

26 tháng 12 2020

2) Để (d) đi qua A(2;8) thì Thay x=2 và y=8 vào hàm số \(y=\left(m^2-2m+3\right)x-4\), ta được: 

\(\left(m^2-2m+3\right)\cdot2-4=8\)

\(\Leftrightarrow2m^2-4m+6-4-8=0\)

\(\Leftrightarrow2m^2-4m-6=0\)

\(\Leftrightarrow2m^2-6m+2m-6=0\)

\(\Leftrightarrow2m\left(m-3\right)+2\left(m-3\right)=0\)

\(\Leftrightarrow\left(m-3\right)\left(2m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\2m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\2m=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Vậy: Để (d) đi qua A(2;8) thì \(m\in\left\{3;-1\right\}\)

19 tháng 11 2023

a) Khi m =2 thì y = 3x - 1 

(Bạn tự vẽ tiếp)

b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)

c)

Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)

Giao điểm của 2 đường thẳng thuộc trục tung => x=0

Khi đó, ta có: \(y=-3.0+2=2\)

⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)

⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)

 

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)