Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^x+80=5^y\left(1\right)\)
+) Với \(x=0\)thay vào (1) ta được :
\(4^0+80=5^y\)
\(81=5^y\)( loại )
+) Với \(x=1\)thay vào(1) ta được:
\(4^1+80=5^y\)
\(84=5^y\)( loại )
+) Với x>1 ta có: \(4^x\)có tận cùng là hoặc 6 nên \(4^x+80\) sẽ có tận cùng là 4 hoặc 6
Mà \(5^y\)luôn có chữ số tận cùng là 5
\(\Rightarrow\)mâu thuẫn
\(\Rightarrow x>1\)loại
Vậy ko có giá trị x,y nào
dòng thứ 5 từ dưới lên trên
Mình ghi thiếu là chỗ \(4^x\)có tận cùng là 4 hoặc 6
Lời giải:
Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)
Do đó diện tích xq của hình nón là:
\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)
Đáp án C
\(S=5+5^2+5^3+.............+5^{2004}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+..........+\left(5^{2001}+5^{2004}\right)\) (\(1007\) nhóm)
\(\Leftrightarrow S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2001}\left(1+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+............+5^{2001}.126\)
\(\Leftrightarrow S=126\left(5+5^2+...........+5^{2001}\right)⋮126\)
\(\Leftrightarrow S⋮126\rightarrowđpcm\)
\(S=5+5^2+5^3+5^4+...+5^{2004}\\ =\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2001}+5^{2003}\right)+\left(5^{2002}+5^{2004}\right)\\ =5\cdot\left(1+5^2\right)+5^2\cdot\left(1+5^2\right)+...+5^{2001}\cdot\left(1+5^2\right)+5^{2002}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)\\ =26\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)⋮26\)
Vậy \(S⋮26\)
1 + 12345678910 = 12345678911.
Xin lỗi mình không biết.
70 nhé
5+55+5+5=70