Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)
Gọi ƯC 12n + 1 ; 30n + 2 là d
12n+1 chia hết cho d
30n + 2 chia hết cho d
=> (30n+2) chia hết cho d
=> 15n+1 chia hết cho d
<=> (15n+1) - (12n+1) chia hết cho d
<=> n thuộc ước của 3
n = -1 ; -3 ; 1 ; 3
p/s : chứng minh thô...
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
CMR: S < 2
P/s: Ko tiếp loại Spam
Ta có: \(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1^2}+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(\Rightarrow S< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow S< 2-\frac{1}{50}\)
Vậy S < 2
a)ta có:
\(\frac{3}{10}\)>\(\frac{3}{15}\)
\(\frac{3}{11}\)>\(\frac{3}{15}\)
...
\(\frac{3}{14}\)>\(\frac{3}{15}\)
Cộng từng vế của bất đẳng thức trên ta được:
\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)
Hay S>\(\frac{15}{15}\)=>S>1 (1)
ta có :
\(\frac{3}{11}\)<\(\frac{3}{10}\)
\(\frac{3}{12}\)<\(\frac{3}{10}\)
...
\(\frac{3}{14}\)<\(\frac{3}{10}\)
Cộng từng vế của bất đẳng thức trên ta được:
\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)
Hay S<\(\frac{15}{10}\)<\(\frac{20}{10}\)=2
Vậy S<2 (2)
Theo câu 1 ta có : S>1
Theo câu 2 ta có :S<2
Vậy 1<S<2
=>S ko phải số tự nhiên